
蒙特卡洛算法：随机游走

计算物理b

高阳



回顾

假如圆的面积过大（圆形球场！）
或者你的力气太小

采取投石（投点）法

在某个点的位置时，前后投的距离
随机分布在 −𝜖, 𝜖 ，并且左右投的
距离也随机分布在 −𝜖, 𝜖 。前后与
左右投是不相关的。此距离比圆和
方形的尺寸要小很多。

投好点之后移动到那个点，然后接着
投点。

这是一个马尔可夫过程，也即下一步
的位置只与当前步相关（虽然当前
步与前一步相关）。



• 从区域内随机某个点出发。

• 按照随机规则往左右投，再往前后投。

• 走到新的位置。如果此位置在圆内则计数器加1.

• 重复N步。

• 用计数器的值除以N，此即为点在圆内的概率。

• 用随机游走的方法抽样出了在正方形内的均匀分布！

算法思路与目标



一维随机游走(1)
• 考虑一个一维的晶格，有一个醉汉从x=0处开始行走，每次有p的概率向

右一格，或者q的概率向左一格(p+q=1)。当醉汉行走N步时：

• 醉汉位置在第k个格点（k的奇偶性一定与N相同）：向右的步数为
𝑁+𝑘

2
,向

左的步数为
𝑁−𝑘

2
，

• 故概率为𝑝 𝑘, 𝑁 = 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2𝐶𝑁
(𝑁+𝑘)/2

= 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁!
𝑁+𝑘

2
!
𝑁−𝑘

2
!

• 醉汉的平均位置

𝑘 = σ𝑘 𝑘𝑝(𝑘, 𝑁) = σ𝑘 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2𝑘
𝑁!

𝑁+𝑘

2
!
𝑁−𝑘

2
!

= 𝐼(𝑝)

           定义1 = 𝑇 𝑝 = σ𝑘 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁!
𝑁+𝑘

2
!
𝑁−𝑘

2
!

       0 =
𝑑𝑇

𝑑𝑝
=

𝑁

2𝑝
𝑇 𝑝 +

𝐼(𝑝)

2𝑝
−

𝑁

2𝑞
𝑇 𝑝 +

𝐼 𝑝

2𝑞
 ⇒ 𝐼 𝑝 = 𝑁(𝑝 − 𝑞)



一维随机游走(2)
• 同法可算平方平均：

𝑑𝑇

𝑑𝑝
=

𝑁

2𝑝
𝑇 𝑝 +

𝐼(𝑝)

2𝑝
−

𝑁

2𝑞
𝑇 𝑝 +

𝐼 𝑝

2𝑞

𝑑𝐼

𝑑𝑝
=

𝑁

2𝑝
𝐼 𝑝 +

1

2𝑝
+

1

2𝑞
𝑘2 −

𝑁

2𝑞
𝐼 𝑝 = 2𝑁

𝑘2 = 4𝑁𝑝𝑞 + 𝑝 − 𝑞 2𝑁2 方差为 𝑘2 − 𝑘 2 = 4𝑁𝑝𝑞
• 左右均匀的情况下

𝑘 = 0

𝑘2 − 𝑘 2 = 𝑁

                 标准差 𝑁 与扩散运动相同

          



是否均匀抽样？
• 考察极限情况：当抽样次数足够多时，假设有某种“平衡”分布𝑝𝑖

             𝑝𝑖 = 𝑝 𝑝𝑖−1 + 𝑞𝑝𝑖+1  
• 采取试探解
            𝑝𝑖 ∝ 𝜆𝑖

• 从而有

            1 =
𝑝

𝜆
+ 𝑞𝜆 ⇒ 𝜆1 = 1, 𝜆2 =

𝑝

𝑞

• 所以𝑝𝑖 ∝ 1或者 𝑝𝑖 ∝
𝑝

𝑞

𝑖

• 若p=q显然只有均匀解，否则应该是哪个解呢？
• 从有限N来看应该是第二个
• 所以为了获得均匀抽样，必须p=q=1/2

          



与布朗运动的关系
• 考察N足够大的时候的概率密度 (p=q=1/2时）

                  𝑝 𝑘, 𝑁 = 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁!
𝑁+𝑘

2
!
𝑁−𝑘

2
!

• 利用斯特林公式𝑁! ≈
𝑁

𝑒

𝑁

      𝑝 𝑘, 𝑁 = 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁𝑁

𝑁+𝑘

2

(𝑁+𝑘)/2 𝑁−𝑘

2

(𝑁−𝑘)/2

     ln 𝑝(𝑘) = −𝑁 ln 2 +
𝑁+𝑘

2
ln 𝑝 +

𝑁−𝑘

2
ln 𝑞 +

𝑁+𝑘

2
ln

2𝑁

𝑁+𝑘
+

𝑁−𝑘

2
ln

2𝑁

𝑁−𝑘

             =
𝑁+𝑘

2
ln 𝑝 +

𝑁−𝑘

2
ln 𝑞 −

𝑁+𝑘

2
ln 1 +

𝑘

𝑁
−

𝑁−𝑘

2
ln 1 −

𝑘

𝑁

             =
𝑁+𝑘

2
ln 𝑝 +

𝑁−𝑘

2
ln 𝑞 −

k2

2N
≈ −

𝑘2

2𝑁

• 𝑝 𝑘 ∝ 𝑒−
𝑘2

2𝑁   高斯分布。此即为布朗运动
          



边界处理：回顾

策略3：此投点仍有效，仍记入
总投点数（堆石法），但位置不
变继续投，直至位置可以变化。

这是Metropolis算法，其本质是
细致平衡条件。



边界处理：简化

如何选定游走策略，使得当行走步
数足够多时，粒子在每个方格的概
率相同？也即如何获得一个对离散
型均匀分布的抽样？



边界处理：细致平衡1
• 对每个方格进行编号，1-9. 我们希望获得在很多次游走之后的稳定分布

（平衡分布）𝜋(𝑎)
• 我们希望定出的是当粒子在一个方格a时，其下一步可到的格点（假设相

邻）的概率𝑝(𝑎 → 𝑏)
• 简化起见，我们先考虑位于边上的方格a，其相邻有三个格点b,c,d.
• 显然有归一化方程
       1 = 𝑝 𝑎 → 𝑎 + 𝑝 𝑎 → 𝑏 + 𝑝 𝑎 → 𝑐 + 𝑝(𝑎 → 𝑑)
• 以及转移方程
         𝜋 𝑎 = 𝜋 𝑎 𝑝 𝑎 → 𝑎 + 𝜋 𝑏 𝑝 𝑏 → 𝑎 + 𝜋 𝑐 𝑝 𝑐 → 𝑎 + 𝜋 𝑑 𝑝(𝑑 → 𝑎)
• 结合二者，我们可获得
         𝜋 𝑎 𝑝 𝑎 → 𝑏 + 𝜋 𝑎 𝑝 𝑎 → 𝑐 + 𝜋 𝑎 𝑝(𝑎 → 𝑑) = 𝜋 𝑏 𝑝 𝑏 → 𝑎 + 𝜋 𝑐 𝑝 𝑐 → 𝑎 + 𝜋 𝑑 𝑝(𝑑 → 𝑎)

• 细致平衡条件显然可提供一个解
 𝜋 𝑎 𝑝 𝑎 → 𝑏 = 𝜋 𝑏 𝑝 𝑏 → 𝑎  𝜋(𝑎)𝑝 𝑎 → 𝑐 = 𝜋 𝑐 𝑝 𝑐 → 𝑎      𝜋(𝑎)𝑝 𝑎 → 𝑑 = 𝜋 𝑑 𝑝 𝑑 → 𝑎  

          



边界处理：细致平衡2
• 若我们希望均匀分布，则𝑝 𝑎 → 𝑏 = 𝑝 𝑏 → 𝑎  ，即去和回的概率一样

• 这在一维也被验证过

• 上述方法也可处理角落的方格，所得结果相同

• 此结论可给出堆石法的原因

        中心处有4个方向，
每个概率为1

4
，而边处要满足细致平衡，故需𝑝 𝑎 → 𝑎 = 1/4， 也即在边上的方

格有1/4的概率留在原地；同理，角落处的方格有1/2的概率留在原地。这样获得的平衡分布才是均匀分布。

          



边界处理：转移矩阵
• 对方格进行顺序的1-9标号，之后可将所有的过程组成一个矩阵

𝑝 𝑎 → 𝑏 =
𝑝(1 → 1) ⋯ 𝑝(9 → 1)

⋮ ⋱ ⋮
𝑝(1 → 9) ⋯ 𝑝(9 → 9)

          

𝑝 𝑎 → 𝑏 =

本征值

本征矢量



边界处理：转移矩阵2
• 本征方程
                p 𝜓𝑖 = 𝜆𝑖  𝜓𝑖

• 对于任意一个初始状态𝜓𝑜𝑟𝑖,它可按照本征矢进行分解
          𝜓𝑜𝑟𝑔 = σ𝑖 𝑎𝑖𝜓𝑖

• 从而，我们可以将转移矩阵多次作用其上来获得演化过程
          p 𝜓𝑜𝑟𝑔 = 𝑝 σ𝑖 𝑎𝑖𝜓𝑖 = σ𝑖 𝑎𝑖𝜆𝑖𝜓𝑖

          𝑝𝑛 𝜓𝑜𝑟𝑔 = 𝑝𝑛 σ𝑖 𝑎𝑖𝜓𝑖 = σ𝑖 𝑎𝑖𝜆𝑖
𝑛𝜓𝑖

• 注意到，转移矩阵的本征值最大的为1，其次为3/4，当n很大时，我们有
       𝑝𝑛 𝜓𝑜𝑟𝑔 = σ𝑖 𝑎𝑖𝜆𝑖

𝑛𝜓𝑖 ≈ 𝑎1𝜓1 + 0.75𝑛 𝑎2𝜓2

      多次转移之后，分布会以指数趋于均匀分布（平衡分布）



引申：Metropolis算法
• 在之前计算圆周率的算法中，构型要么可取要么不可取，对于这种简单

的情况，我们已有讨论
• 随机游走抽样可推广至一般情形，也即不同构型有确定的概率分布𝜋 𝑎
• 此时，转移矩阵需满足

        𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎

• 证明：

情形 𝝅 𝒂 > 𝝅(𝒃) 𝝅 𝒃 > 𝝅(𝒂)

𝑝(𝑎 → 𝑏) 𝜋(𝑏)/𝜋(𝑎) 1

𝜋(𝑎)𝑝(𝑎 → 𝑏) 𝜋(𝑏) 𝜋(𝑎)

𝑝(𝑏 → 𝑎) 1 𝜋(𝑎)/𝜋(𝑏)

𝜋 𝑏 𝑝(𝑏 → 𝑎) 𝜋(𝑏) 𝜋(𝑎)



算法步骤
• 1.选取试探位置，𝑥𝑡 = 𝑥𝑛 + 𝜂𝑛,其中𝜂𝑛可为在(−𝛿, 𝛿)区间内的随机数。

• 2. 计算𝑟 = 𝜋(𝑥𝑡)/𝜋(𝑥𝑛)

• 3. 若𝑟 ≥ 1，则应接受此改变，也即𝑥𝑛+1 = 𝑥𝑡 .

• 4. 否则，产生一个（0,1）内的随机数𝜉,若𝜉 < 𝑟,则亦接受此改变，也即
𝑥𝑛+1 = 𝑥𝑡。否则, 𝑥𝑛+1 = 𝑥𝑛。

• 5.从新的位置出发走下一步，直到达到预定的总步数。



讨论

• 对于简单的正方形区域，做周期性边条件是可以的。但此方法对于一般
区域很难扩展；对于平衡分布不均匀的情况，即使在正方形区域，也应
按照Metropolis算法做推广。

• 对于原问题，在点到边界外的时候
𝜋 𝑏

𝜋 𝑎
= 0,所以此点需抛弃。在边界内的

时候
𝜋 𝑏

𝜋 𝑎
= 1（均匀分布），故肯定接受。

• 特别注意：细致平衡仅仅是充分条件，不是必要的！



先验概率
• 在前面的例子中，从某个点移至下个点时，其移动有范围要求，或者更

严谨的说，当粒子位于某个点𝑥0时，其之后的选点满足某个概率分布
 𝐴(𝑥|𝑥0)。这个概率分布是提前给出而不是后续推导获得的，也即先验概
率。

• 先验概率在随机游走抽样中普遍存在。

• 存在先验概率时，Metropolis算法需基于条件概率做进一步修改
             𝑃 𝑎 → 𝑏 = 𝐴 𝑏 𝑎  𝑝 𝑎 → 𝑏 （转移 = 选择 ∗  接受）
• 细致平衡：𝜋 𝑎 𝑃 𝑎 → 𝑏 = 𝜋 𝑏 𝑃(𝑏 → 𝑎)
• Metropolis条件：

                                𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎
∗

𝐴(𝑎|𝑏)

𝐴(𝑏|𝑎)



先验概率示例：三角形算法

• 𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎
∗

𝐴(𝑎|𝑏)

𝐴(𝑏|𝑎)
= 0 此位移不可接受！

𝐴 𝑏 𝑎 ≠ 0 𝐴 𝑎 𝑏 = 0



特殊情况

• 𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎
∗

𝐴(𝑎|𝑏)

𝐴(𝑏|𝑎)

• 若𝐴 𝑎 𝑏 = 𝜋 𝑎 , 𝐴 𝑏 𝑎 = 𝜋(𝑏) 也即粒子到某个位点的先验概率与当
前位点完全无关，则有

          𝑝 𝑎 → 𝑏 = 1 永远成立
• 此时随机游走抽样完全变为直接抽样（也即在正方形内随机取点）

• 先验概率最有用的场景：我们大致可以做直接抽样，或对于某个子系
统大致可以做。此时先验概率的作用大致和微扰处理相似。



步长选择
• 步长不可太大，否则投点很容易出界，没有有效的位移点。
• 步长不可太小，否则投点会局域在初始点附近，无法在整个区域均匀分布。
• 步长应保证，大致1/2的位移被接受。

步长

误差

N=1000



应用1：变分蒙特卡罗算法

• 一般的哈密顿量本征值问题
            ෡𝐻 𝜓 = 𝐸 𝜓
• 对于基态能量，我们有

𝐸 =
⟨𝜓| ෡𝐻|𝜓⟩

⟨𝜓|𝜓⟩
≥ 𝐸0

• 在多数物理问题中，确定基态起到关键作用。而对于多体问题，由于
构型数的指数增长，基态的求解较为困难。

• 根据上式，可采用变分蒙卡，将基态求解化为求参量空间的某个最小
值，从而我们从指数型的构型空间退化到线性增长的构型空间。



算法描述

• 此算法的核心是计算能量平均值，此处可用随机游走的方法获得。

𝐸 =
⟨𝜓| ෡𝐻|𝜓⟩

⟨𝜓|𝜓⟩
≥ 𝐸0

• 重写能量均值

𝐸 =
⟨𝜓| ෡𝐻|𝜓⟩

⟨𝜓|𝜓⟩
= ∫ 𝑑𝑥𝑑𝑦𝑑𝑧 𝜌𝜓 𝐸𝜓

             𝜌𝜓 =
𝜓 2

∫ 𝑑𝑥𝑑𝑦𝑑𝑧 𝜓 2  ,      𝐸𝜓 =
෡𝐻𝜓

𝜓

• 𝜌𝜓可看做带抽样的概率分布。
• 变分法的核心：猜想一个波函数的可能形式𝜓(𝜶),其中𝜶代表一系列可

变参量。我们则应该在对波函数施加此限制之下，改变𝜶，找到对应
于最小平均能量的参量值。其对应的波函数则是我们对精确基态波函
数的近似。



蒙卡算法步骤
• 产生一个初始位置𝑥0，计算𝐸𝜓(𝑥0)

• 在(−𝛿, 𝛿)内产生一个随机数𝜂（注意，此步骤是一维情形，在高维要
把取值区间相应扩展），因当前位置为𝑥𝑛，下一个位置的试探值为
𝑥𝑡 = 𝑥𝑛 + 𝜂

• （Metropolis算法）计算𝜆 =
𝜓 𝑥𝑡

2

𝜓 𝑥𝑛
2 ,如果𝜆 > 1,则接受位置改变𝑥𝑛+1 =

𝑥𝑡 ；否则，产生一个(0,1)内的随机数𝜉,若𝜉 < 𝜆,则接受改变,𝑥𝑛+1 = 𝑥𝑡 ；
再否则， 𝑥𝑛+1 = 𝑥𝑛. 计算𝐸𝜓(𝑥𝑛+1) 。

• 从新位置出发继续游走，直到达到预定的步数。
• 求平均 𝐸 = 1/𝑁 σ𝑖 𝐸𝜓(𝑥𝑖),我们应该在参数空间最小化次平均值。
• 注意：上述求平均的过程从原理上只要产生一个初始位置即可。但实

际操作时，有可能碰到一个位置周围被多个峰包围从而走不出去的情
况，此时可产生多个初始位置分别独立行走来计算均值。



总算法步骤
• 选择初始参量值，从而确定初始试探波函数𝜓(𝜶𝟎)。
• 利用上述随机游走方法计算此试探波函数下的能量均值⟨𝐸0⟩。
• 在参数空间变化一个值，也即将𝜶𝟎 变为𝜶𝟏，获得新的能量均值⟨𝐸1⟩,若

𝐸1 < ⟨𝐸0⟩,则接受变化，以新的参量值作为起始替换𝜶𝟎 。重复此步，
直到能量均值的改变小于某个给定值。

• 注意：参量空间的变化可采用随机游走。此时，应用随机游走产生均
匀分布。



应用2：统计力学
• 目标：计算平衡态时某物理量的测量值（期望值）；

• 方法：1.选择系综。2.根据系综写出分布函数𝜌 ෡𝐻 . 3.计算平均值

𝐴 = 𝑇𝑟 መ𝐴𝜌 ෡𝐻

• 注：在明确本征态的情况下，分布函数能直接解析写出，此时只需计
算对所有态的求和或积分即可；

                在有相互作用的复杂系统，本征态不知，我们只能从每个状态的
概率𝑓(𝐻)出发，计算配分函数：Z = σ 𝑓(𝐻) 。从而𝜌 = 𝑓/𝑍
• 由于是求期望，自然可用概率算法。

• 关键：产生满足𝜌 ෡𝐻 的状态构型抽样。
• 方法：随机游走+Metropolis算法



算法思路（1）
• 1.选择初始状态𝑥0.(注：按照教材所说，此状态最好在分布密度较大的

区域。若担心初始状态会限于一个区域，也可产生一个初始状态的合
集，对里面的值分别独立进行游走）

• 2.若游走至第n步，需到第n+1步。则首先用随机方法产生一个试探状
态𝑥𝑡 = 𝑥𝑛 + 𝜂𝑛，其中𝜂𝑛 ∈ −𝛿, 𝛿 。（注：这里假设了连续状态，给
出了一个特例。但连续性不是必须的，只需把握两点：（1）下个状态
在某个范围内取值；（2）进入这个范围内的状态需要一个预先给定的
已知概率，也即先验概率。）

• 3.计算过渡概率𝑤(𝑥𝑛, 𝑥𝑡)，注意，可以不是metropolis算法。在
Metropolis算法下，我们有

                 𝑤 𝑥𝑛, 𝑥𝑡 = min 1,
𝑓 𝐻 𝑥𝑡

𝑓 𝐻 𝑥𝑛
 

• 4.产生[0,1]内的随机数𝑟



算法思路（1）
• 5. 若𝑟 ≤ 𝑤,则接受改变，也即𝑥𝑛+1 = 𝑥𝑡;  否则， 𝑥𝑛+1 = 𝑥𝑛;

• 6. 在第n+1个构型上计算估计值
              𝐴𝑛+1 = 𝐴(𝑥𝑛+1)

• 7.回到第2步往下执行，直到重复N次，共获得N个对A的估计值。

• 8. 将所有估计值相加除以N，此即为A的期望值。



例子：伊辛模型
• 模型的哈密顿量：

          𝐻 = −
𝐽

2
σ 𝑖𝑗 𝑆𝑖𝑆𝑗 − 𝐵 σ𝑖 𝑆𝑖

• 每个点的自旋只有两个选择，+1或-1，代表向上或向下。第一项为各
向同性交换场，第二项为外磁场引入的塞曼能。 𝑖𝑗 代表最近邻的两
个位点。

• 配分函数：
                   𝑍 = σ𝑆 𝑒−𝛽𝐻

• 磁化强度

                 𝑀 =
1

𝛽

𝜕 ln 𝑍

𝜕𝐵
=

1

𝑍
σ𝑆 𝑀 𝑆 𝑒−𝛽𝐻,     𝑀 𝑆 = σ𝑖 𝑆𝑖

• 通常，我们会关注M，也即𝑀 𝑆 的期望值，来看是否有自发磁化（相
变），或者关注𝑀 𝑆 的涨落，根据涨落-耗散定理，这和磁化率乘正比，
其发散行为也预示相变。



算法思路
• 选择初始构型，𝑆0 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑛}.
• 有了第m个位型𝑆𝑚后，需游走获得第m+1个位型。方法：产生一个1到n之间的整

数随机数i,将𝑠𝑖翻转，也即𝑠𝑖 = −𝑠𝑖。记此构型为试探构型𝑆𝑡。
• 根据哈密顿量计算能量差Δ𝐸 = 𝐸 𝑆𝑡 − 𝐸 𝑆𝑚 . 
• 若Δ𝐸 ≤ 0,则𝑆𝑚+1 = 𝑆𝑡.

• 否则，产生一个[0,1]内的随机数𝜉，若𝜉 ≤ 𝑒−𝛽Δ𝐸则𝑆𝑚+1 = 𝑆𝑡；否则𝑆𝑚+1 = 𝑆𝑚。
• 在每一步监控Δ𝐸的值，若在若干步内Δ𝐸的均值小于某个预设值，则我们可说系统

已到平衡态。
• 在达到平衡态之后，继续游走L步。在每一步计算𝑀(𝑆𝑖).最后获得

𝑀 =
1

𝐿
σ𝑖∈𝐸𝑞𝑢𝑎𝑙 𝑀(𝑆𝑖)

• 由于位型增长过快，体系可能整体大小不大。为消除边界效应，可采用周期边条
件。



应用3：偏微分方程求解
• 目标：在区域D中求解如下泊松方程

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = 𝑞 𝑥, 𝑦 ,  𝜙|𝜕𝐷 = 𝐹 𝑠 , 𝑠 ∈ 𝜕𝐷

• 首先进行离散化处理,考虑方形区域，并且将此区域进行横纵等距分割，
相邻格点距离为h，则微分可用差分代替(每个格点有四个近邻）。

       ∇2𝜙|𝑅 =
1

ℎ2 𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 − 4𝜙𝑅 = 𝑞(𝑅)

             𝜙𝑅 =
1

4
𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 − ℎ2𝑞 𝑅

• 我们的目标是计算格点上的函数值。进一步假设边界正好也对应到分
割线。若总共有N个格点，则我们可将所有格点的函数值组成一个N维
的列向量，则泊松方程加上边界条件可写为如下矩阵形式

                      𝜙 = 𝑃𝜙 + 𝐴



形式解析
• 离散化方程𝜙 = 𝑃𝜙 + 𝐴
• 1. 对于矩阵P：考虑𝑝𝑖𝑗其中i不在边界上，则𝑝𝑖𝑗 = 1/4或0：前者对应于

j是i的相邻点；后者对应其它情形。
• 2.对于矩阵P：考虑𝑝𝑖𝑗其中i在边界上，则𝑝𝑖𝑗 = 0，也即边界上是简单

赋值。

• 3.对于向量𝐴：考虑𝐴𝑖其中i不在边界上，则𝐴𝑖 = −
ℎ2

4
𝑞(𝑅𝑖)

• 4.对于向量𝐴：考虑𝐴𝑖其中i在边界上，则𝐴𝑖 = 𝐹(𝑅𝑖)
• 5. 上式的待定函数有如下形式解：
             𝜙 = 𝐼 − 𝑃 −1𝐴 = 𝐼𝐴 + 𝑃𝐴 + 𝑃2𝐴 + ⋯



与随机游走的关联
• 考虑如下形式解：
             𝜙 = 𝐼 − 𝑃 −1𝐴 = 𝐼𝐴 + 𝑃𝐴 + 𝑃2𝐴 + ⋯
• 抽取某个项
           𝜙𝑖 = 𝑃𝑖𝑗𝑃𝑗𝑗1

𝑃𝑗1𝑗2
⋯ 𝑃𝑗𝑛−1𝑗𝑛

𝐴𝑗𝑛

       它实际上代表某个从i到𝑗𝑛的路径而𝑃𝑖𝑗𝑃𝑗𝑗1
𝑃𝑗1𝑗2

⋯ 𝑃𝑗𝑛−1𝑗𝑛
则“大约”是此路径的出现概

率。
       原因：对于P矩阵，其每行元素的和必是1(除非在边界）：这是某种转移矩阵！
       性质：若i和𝑗𝑛都不在边界点上，则中间的路径点不能包含边界点。从P的性质的直
接观察证明。
• 通过随机游走可抽样出满足此概率的路径集合。方法：定义第a个格点的停止概率

为𝑃𝑎 = 1 − σ𝑏 𝑃𝑎𝑏.显然𝑃𝑎 = 0或1,前者对应a在区域内后者对应于a在边界。将Pa纳
入转移矩阵。从i点出发，根据转移矩阵决定的概率进行游走，若下一步的位置和
当前位置相同，则停止；此时正好获得一条路径。注意到根据此方法，停止必发
生于边界点。



与随机游走的关联（2）
• 考虑所有这种路径的集合，并计算如下表达式

𝜙𝑅 = σΓ 𝐴(Γ) = σΓ σ𝑟𝑖∈Γ 𝐴(𝑟𝑖)

• 交换求和次序
𝜙𝑅 = σΓ σ𝑟𝑖∈Γ 𝐴(𝑟𝑖) = σ𝑟𝑖

σΓ, 𝑠.𝑡. 𝑟𝑖∈Γ 𝐴(𝑟𝑖)

• 所有的路径都以R为起点，故第二个求和显然具有之前的形式

                σΓ, 𝑠.𝑡. 𝑟𝑖∈Γ 𝐴(𝑟𝑖) = 𝐼 − 𝑃 −1𝐴
𝑅𝑟𝑖

• 所以，在游走路径足够多时，我们可说
             𝜙𝑅 ≈ 𝜙𝑅 = σΓ 𝐴(Γ)



算法思路
• 1. 网格分划，离散化偏导数，如之前所示。网格分划应包含边界为其中的网格线。

初始化游走路径数目Nw。
• 2.将区域内部的网格点编号，记编号为i，其范围为1到N，N为总内部格点数。
• 3.考察第i个格点，将其作为出发点。从i格点开始随机游走，每次有1/4的概率走至

相邻的格点中的一个（可用塔式抽样决定是哪个格点），直到边界处停止，完成

一个路径。在每个路径点处计算A的值，其值在内部为−
ℎ2

4
𝑞(𝑟𝑖),在边界为𝐹(𝑟𝑖).将

所有值加和构成对𝜙𝑅的一个无偏估计。
• 4.重复游走过程，直到获得Nw条游走路径，将所有无偏估计加和并除以Nw，此即

为𝜙𝑖，也即待定函数在第i个格点的值。
• 5.重复第3,4步，直到遍历所有格点。

• 注：由于转移矩阵在内部不停留，此法的收敛性较差，是边界收敛的情况。好的
收敛需要在每个格点都有一定概率停留（每个行的和小于1）。



应用4：格林函数蒙卡
• 目标：考察扩散方程

𝜕𝜌

𝜕𝑡
= 𝛼

𝜕2𝜌

𝜕𝑥2

• 上述方程的格林函数为

                  𝐺0 𝑥, 𝑦; 𝑡 =
1

4𝜋𝛼𝑡
𝑒−

𝑥−𝑦 2

4𝛼𝑡

• 当y固定时，G是扩散方程的解。当t趋于0时，G趋于delta函数𝛿(𝑥 − 𝑦)
• 此格林函数可用于计算初态给定时之后任意时刻的函数值
            𝜌 𝑦, 𝑡 = ∫ 𝑑𝑥 𝐺0 𝑦, 𝑥; 𝑡 𝜌(𝑥, 0)， ∫ 𝐺0 𝑦, 𝑥; 𝑡 𝑑𝑥 = 1
• 所以，为求得函数值，我们只需抽样满足G0分布的位置值。



格林函数抽样
• 此格林函数可看做初始值在x时的单步游走的概率分布，也即转移概率

为
        𝑇Δ𝑡 𝑥 → 𝑦 = 𝐺0 𝑦, 𝑥; Δ𝑡
• 故此格林函数也等价于一种随机游走过程，也即郎之万过程，其游走

方程由下式给出

             𝑥 𝑡 + Δ𝑡 = 𝑥 𝑡 + 𝜂 Δ𝑡

         其中， 𝜂满足高斯分布：𝑓 𝜂 =
1

4𝜋𝛼
𝑒−

𝜂2

4𝛼

• 证明：在初始为x，下一时刻在y到y+dy的概率为

            𝑝 𝑦 𝑑𝑦 = 𝑓
𝑦−𝑥

Δ𝑡
𝑑𝜂 = 𝑓

𝑦−𝑥

Δ𝑡

1

Δ𝑡
𝑑𝑦 = 𝐺0 𝑦, 𝑥; Δ𝑡 𝑑𝑦



离散对应
• 注意上述郎之万过程是连续的，只有时间尺度离散。
• 我们也可考虑实空间的离散化对应：考虑一个一维的晶格点阵，相邻

位点距离相同，为a。时间离散间隔为h。在每个晶格点上，粒子左移
一格和右移一格的概率均为𝛽，则粒子留在原位的概率为1 − 2𝛽.

•  我们关心粒子在时刻t位于第i个格点的概率𝜌(𝑥𝑖 , 𝑡)，则
        𝜌 𝑥𝑖 , 𝑡 = 𝛽𝜌 𝑥𝑖 + 𝑎, 𝑡 − ℎ + 𝛽𝜌 𝑥𝑖 − 𝑎, 𝑡 − ℎ + 1 − 2𝛽 𝜌(𝑥𝑖 , 𝑡 − ℎ)
• 做等价变形
          𝜌 𝑥𝑖 , 𝑡 − 𝜌 𝑥𝑖 , 𝑡 − ℎ = 𝛽 𝜌 𝑥𝑖 + 𝑎, 𝑡 − ℎ + 𝜌 𝑥𝑖 − 𝑎, 𝑡 − ℎ − 2𝜌 𝑥𝑖 , 𝑡 − ℎ

𝜕𝜌

𝜕𝑡
= 𝛽𝑎2 𝜕2𝜌

𝜕𝑥2

           确实变为了扩散方程！
        连续比离散更好，因为省掉了离散趋于连续的极限过程。



一般情形(1)
• 一般的扩散方程

𝜕𝜌

𝜕𝑡
= 𝐿𝜌 = −

𝑝2

2
+ 𝑉 𝜌 =

1

2

𝜕2

𝜕𝑥2 − 𝑉 𝜌

• 格林函数
                    𝐺0 𝑦, 𝑥; 𝑡 = ⟨𝑥|𝑒𝑡𝐿|𝑦⟩
• 与演化子和编时算符类似
• 由于动能部分和势能部分不对易，上述格林函数很难求解。
• 做离散化处理，考虑在一个小时间间隔𝜏后的格林函数。利用Baker-

Hausdorff公式，我们有

        𝑒−𝑡 𝑇+𝑉 −
1

2
𝑡2 𝑇,𝑉 +𝑂(𝑡3) = 𝑒−𝑡𝑇𝑒−𝑡𝑉

      故𝑒𝑡𝐿 = 𝑒−𝑡𝑇𝑒−𝑡𝑉 + 𝑂(𝑡2)



一般情形(2)
• 动能部分可简单算出

               𝐺𝑘𝑖𝑛 = 𝑥 𝑒−𝜏𝑇 𝑦 = σ𝑝1𝑝2
𝑥 𝑝1 𝑝1 𝑒−𝜏𝑇 𝑝2 𝑝2 𝑦 =

1

2𝜋𝜏
𝑒−

𝑦−𝑥 2

2𝜏

• 总格林函数为
         𝐺0 = 𝐺𝑘𝑖𝑛𝑒−𝜏𝑉(𝑦)

• 势函数部分破坏了归一性，无法与随机游走对应。
• 定义新的格林函数
           𝐺 = 𝐺0𝑒𝜏𝐸𝑇  也即多乘一个常数以恢复归一性。
• 则新格林函数满足

𝜕𝐺

𝜕𝑡
=

1

2

𝜕2

𝜕𝑥2 − 𝑉 + 𝐸𝑇 𝐺

• 其平衡分布对应一个本征值问题：

−
1

2

𝜕2

𝜕𝑥2 + 𝑉 𝐺 𝑥 = 𝐸𝑇𝐺(𝑥)



算法执行
• 这里我们只把重点放在随机游走上，也即利用随机游走获得满足格林函数分布的

位置。暂时不考虑具体要计算哪个物理量，这应根据实际问题添加。
• 首先，产生一个初始的位置集合𝑋0 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}.我们将从每个位点出发进行独

立游走。对于起始于第i个位置的游走过程，当粒子的当前位置𝑥(𝑡)已知时，其下
个位置按照郎之万过程，根据扩散部分（动能部分）的格林函数获得

                  𝑥 𝑡 + Δ𝑡 = 𝑥 𝑡 + 𝜂 Δ𝑡

          其中𝑓 𝜂 =
1

2𝜋
𝑒−

𝜂2

2  𝛼 =
1

2

• 对于新的位点，计算相应物理量的值，此时这个值作为对物理量的平均值的贡献
需额外乘以一个由势能部分决定的权重因子

                𝑤 = 𝑒−Δ𝑡 𝑉 𝑥 𝑡+Δ𝑡 −𝐸𝑇

• 对每条路径进行游走，直到步长达到预设值。
• 将所有路径的所有位点的贡献加和，从而得到所需的期望值。
• 注：此方法效率较低。因为可能有不少粒子会跑到权重很小的区域（它们与其他

区域从动能角度看无本质不同），而此时他们需要同样多的时间（与其他粒子相
比）移出此区域。



消长算法
• 我们只需考虑行走到某个新格点之后的处理。原算法是在算物理量之后附加某个

势能部分决定的权重因子，而消长算法则给出此消彼长的变化。

• 计算：在新格点处计算𝑞 = 𝑒−Δ𝑡[𝑉 𝑅𝑛𝑒𝑤 −𝐸𝑇]

• 消：若𝑞 < 1，则此粒子的随机游走有q的概率保持（也即接着进行），而有1 − 𝑞
的概率直接消亡。注意：若消亡，总粒子数会减少。

• 长：若𝑞 > 1，则此粒子有𝑞 − [𝑞]的概率孕育[𝑞]个新粒子，而有1 + 𝑞 − 𝑞的概率
孕育 𝑞 − 1个新粒子。然后对于现在存在的所有粒子，从其当前位置开始游走。
注意：此时，总粒子数增多。

• 计算物理量的估计值时，需要用消长之后的粒子来计算。也就是说，若消亡则当
前位置无贡献，若生长，则当前位置的值需要乘以生长之后的粒子数。



确定𝐸𝑇
• 我们无法直接求解本征问题确定𝐸𝑇:若本征问题可解，扩散问题已经能解出。在长

时间演化后，𝐸𝑇会趋于基态能量（之后讲）。
• 根据消长算法，在每一步的粒子数是可能变化的。但实际上，不管是增多还是减

少都不好。若增多，则计算负担会增大。若减小，则统计涨落会增大。

• 可取策略，在每一步都调整𝐸𝑇  的值，使得总粒子数不变。

• 调整𝐸𝑇  的值的方法：若希望总粒子数为M，而在某一步根据消长算法变化后粒子
数为M’,则

                              𝐸𝑇 → 𝐸𝑇 + 𝜖 ln
𝑀

𝑀′

       其中𝜖为一个预设的小量。
        若𝑀′ > 𝑀, 𝐸𝑇  𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑞 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒,  𝑎𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑒 𝑚𝑜𝑟𝑒! 

若𝑀′ < 𝑀, 𝐸𝑇  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝑞 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒,  𝑎𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑒 𝑙𝑒𝑠𝑠 𝑜𝑟 𝑏𝑟𝑒𝑒𝑑 𝑚𝑜𝑟𝑒!



归一化原理
• 数学核心：平衡分布可分解成两个部分，即𝑓 𝑥 = 𝑔 𝑥 ℎ 𝑥 ；𝑔 𝑥 = 𝐺𝑘𝑖𝑛也即由

动能决定的扩散部分的分布，它已经归一化了；而ℎ 𝑥 = 𝑒−Δ𝑡[𝑉(𝑥)−𝐸𝑇]由势能决
定

• 若将消长过程统一，算法是每次有h 𝑥 − [ℎ(𝑥)]的概率孕育[ℎ(𝑥)]个新粒子,而有
1 + ℎ(𝑥) − ℎ(𝑥)的概率孕育 ℎ(𝑥) − 1个新粒子.

• 计算粒子总数平均值
𝑁 = 𝑁 + ∫ 𝑑𝑥 𝑔 𝑥 h 𝑥 − ℎ 𝑥 ℎ 𝑥

                                  +∫ 𝑑𝑥 𝑔(𝑥) 1 + ℎ 𝑥 − ℎ 𝑥 ℎ 𝑥 − 1

                      = 𝑁 + ∫ 𝑑𝑥 𝑔 𝑥 ℎ 𝑥 − ∫ 𝑑𝑥𝑔(𝑥) 1 + ℎ 𝑥 − ℎ 𝑥

                      = 𝑁 + ∫ 𝑑𝑥 𝑔 𝑥 ℎ 𝑥 − 1
                      = 𝑁
• 最后一个等号成立需要：（1） 𝑓 𝑥 归一化，也即𝐸𝑇达到正确值；（2） 𝑔 𝑥 归

一化，这个已经被保证了。

扩散概率 生长数生长概率



算法原理
• 数学核心：某个量的平均值

𝑂 = ∫ 𝑑𝑥 𝑓 𝑥 𝑂(𝑥)
• 若将消长过程统一，算法是每次有h 𝑥 − [ℎ(𝑥)]的概率孕育[ℎ(𝑥)]个新粒子,而有

1 + ℎ(𝑥) − ℎ(𝑥)的概率孕育 ℎ(𝑥) − 1个新粒子.

• 计算平均值
𝑂 = ∫ 𝑑𝑥 𝑔 𝑥 h 𝑥 − ℎ 𝑥 ℎ 𝑥 + 1 𝑂(𝑥)

                                  +∫ 𝑑𝑥 𝑔 𝑥 1 + ℎ 𝑥 − ℎ 𝑥 ℎ 𝑥  𝑂(𝑥)

                      = ∫ 𝑑𝑥 𝑔 𝑥 ℎ 𝑥 𝑂 𝑥 + ∫ 𝑑𝑥𝑔 𝑥 − ℎ 𝑥 + ℎ 𝑥 𝑂 𝑥

                      = ∫ 𝑑𝑥 𝑔 𝑥 ℎ 𝑥 𝑂(𝑥)

• 确实和所需的期望值相同。



本征值问题
• 演化算子投影：
         𝑒−𝑡(𝐻−𝐸𝑇) = σ𝑛 𝑒−𝑡(𝐸𝑛−𝐸𝑇) |𝜙𝑛⟩⟨𝜙𝑛|
• 格林函数为

           𝐺 = 𝑥 𝑒−𝑡 𝐻−𝐸𝑇 𝑦 = σ𝑛 𝑒−𝑡(𝐸𝑛−𝐸𝑇) ⟨𝑥|𝜙𝑛⟩⟨𝜙𝑛|𝑦⟩

• 当演化时间足够长时， 𝑒−𝑡(𝐸𝑛−𝐸𝑇)中最大的对应于基态能量，其他的
相比于此会指数衰减。

• 故：长时间演化下的格林函数=基态投影
• 由此，可设计算法获得基态能量和波函数。
              



推广
• Feynmann-Kac公式：考虑如下偏微分方程

𝜕𝑢

𝜕𝑡
+ 𝜇

𝜕𝑢

𝜕𝑥
+

1

2
𝜎2 𝜕2𝑢

𝜕𝑥2 − 𝑉𝑢 + 𝑓 = 0

• 其中， 𝜇，𝜎，𝑉， 𝑓 这四个系数都与位置和时间相关。
        x为实数，𝑡 ∈ 0, 𝑇 ,边条件为𝑢 𝑥, 𝑇 = 𝜓(𝑥)
• 则u可用如下方式获得

       𝑢 𝑥, 𝑡 = 𝐸𝑄 𝑒− ∫𝑡
𝑇

𝑉 𝑋𝜏,𝜏 𝑑𝜏𝜓 𝑋𝑇 + ∫𝑡

𝑇
𝑒− ∫𝑡

𝑇
𝑉 𝑋𝑠,𝑠 𝑑𝑠 𝑓 𝑋𝜏, 𝜏 𝑑𝜏 |𝑋𝑡=𝑥

• 其中，X的值由下述随机过程决定
            𝑑𝑋𝑡 = 𝜇 𝑋𝑡 , 𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 , 𝑡 𝑑𝑊𝑡

        而𝑊𝑡代表布朗运动。



作业

1.三点问题：
          
                1          2          3
   假设我们需使得粒子在这三个点上的概率分别为
0.2,0.5,0.3. 请设计随机游走过程加以实现，其中，每个
粒子最多只能运动到和它当前位置直接相连的格点。（1）
请给出算法步骤；（2）编写相应程序；（3）用程序游
走N步（设N=1000），统计不同格点出现的频数（画出
频数直方图即可）。



作业

1. 教材第二章17题，给出具体的算法步骤（只需算法步
骤，不需写代码）。
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