
蒙特卡洛算法：随机游走

计算物理b

高阳



回顾

假如圆的面积过大（圆形球场！）
或者你的力气太小

采取投石（投点）法

在某个点的位置时，前后投的距离
随机分布在 −𝜖, 𝜖 ，并且左右投的
距离也随机分布在 −𝜖, 𝜖 。前后与
左右投是不相关的。此距离比圆和
方形的尺寸要小很多。

投好点之后移动到那个点，然后接着
投点。

这是一个马尔可夫过程，也即下一步
的位置只与当前步相关（虽然当前
步与前一步相关）。



• 从区域内随机某个点出发。

• 按照随机规则往左右投，再往前后投。

• 走到新的位置。如果此位置在圆内则计数器加1.

• 重复N步。

• 用计数器的值除以N，此即为点在圆内的概率。

• 用随机游走的方法抽样出了在正方形内的均匀分布！

算法思路与目标



一维随机游走(1)
• 考虑一个一维的晶格，有一个醉汉从x=0处开始行走，每次有p的概率向

右一格，或者q的概率向左一格(p+q=1)。当醉汉行走N步时：

• 醉汉位置在第k个格点（k的奇偶性一定与N相同）：向右的步数为
𝑁+𝑘

2
,向

左的步数为
𝑁−𝑘

2
，

• 故概率为𝑝 𝑘, 𝑁 = 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2𝐶𝑁
(𝑁+𝑘)/2

= 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁!
𝑁+𝑘

2
!
𝑁−𝑘

2
!

• 醉汉的平均位置

𝑘 = σ𝑘 𝑘𝑝(𝑘, 𝑁) = σ𝑘 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2𝑘
𝑁!

𝑁+𝑘

2
!
𝑁−𝑘

2
!

= 𝐼(𝑝)

           定义1 = 𝑇 𝑝 = σ𝑘 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁!
𝑁+𝑘

2
!
𝑁−𝑘

2
!

       0 =
𝑑𝑇

𝑑𝑝
=

𝑁

2𝑝
𝑇 𝑝 +

𝐼(𝑝)

2𝑝
−

𝑁

2𝑞
𝑇 𝑝 +

𝐼 𝑝

2𝑞
 ⇒ 𝐼 𝑝 = 𝑁(𝑝 − 𝑞)



一维随机游走(2)
• 同法可算平方平均：

𝑑𝑇

𝑑𝑝
=

𝑁

2𝑝
𝑇 𝑝 +

𝐼(𝑝)

2𝑝
−

𝑁

2𝑞
𝑇 𝑝 +

𝐼 𝑝

2𝑞

𝑑𝐼

𝑑𝑝
=

𝑁

2𝑝
𝐼 𝑝 +

1

2𝑝
+

1

2𝑞
𝑘2 −

𝑁

2𝑞
𝐼 𝑝 = 2𝑁

𝑘2 = 4𝑁𝑝𝑞 + 𝑝 − 𝑞 2𝑁2 方差为 𝑘2 − 𝑘 2 = 4𝑁𝑝𝑞
• 左右均匀的情况下

𝑘 = 0

𝑘2 − 𝑘 2 = 𝑁

                 标准差 𝑁 与扩散运动相同

          



是否均匀抽样？
• 考察极限情况：当抽样次数足够多时，假设有某种“平衡”分布𝑝𝑖

             𝑝𝑖 = 𝑝 𝑝𝑖−1 + 𝑞𝑝𝑖+1  
• 采取试探解
            𝑝𝑖 ∝ 𝜆𝑖

• 从而有

            1 =
𝑝

𝜆
+ 𝑞𝜆 ⇒ 𝜆1 = 1, 𝜆2 =

𝑝

𝑞

• 所以𝑝𝑖 ∝ 1或者 𝑝𝑖 ∝
𝑝

𝑞

𝑖

• 若p=q显然只有均匀解，否则应该是哪个解呢？
• 从有限N来看应该是第二个
• 所以为了获得均匀抽样，必须p=q=1/2

          



与布朗运动的关系
• 考察N足够大的时候的概率密度 (p=q=1/2时）

                  𝑝 𝑘, 𝑁 = 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁!
𝑁+𝑘

2
!
𝑁−𝑘

2
!

• 利用斯特林公式𝑁! ≈
𝑁

𝑒

𝑁

      𝑝 𝑘, 𝑁 = 2−𝑁𝑝(𝑁+𝑘)/2𝑞(𝑁−𝑘)/2 𝑁𝑁

𝑁+𝑘

2

(𝑁+𝑘)/2 𝑁−𝑘

2

(𝑁−𝑘)/2

     ln 𝑝(𝑘) = −𝑁 ln 2 +
𝑁+𝑘

2
ln 𝑝 +

𝑁−𝑘

2
ln 𝑞 +

𝑁+𝑘

2
ln

2𝑁

𝑁+𝑘
+

𝑁−𝑘

2
ln

2𝑁

𝑁−𝑘

             =
𝑁+𝑘

2
ln 𝑝 +

𝑁−𝑘

2
ln 𝑞 −

𝑁+𝑘

2
ln 1 +

𝑘

𝑁
−

𝑁−𝑘

2
ln 1 −

𝑘

𝑁

             =
𝑁+𝑘

2
ln 𝑝 +

𝑁−𝑘

2
ln 𝑞 −

k2

2N
≈ −

𝑘2

2𝑁

• 𝑝 𝑘 ∝ 𝑒−
𝑘2

2𝑁   高斯分布。此即为布朗运动
          



边界处理：回顾

策略3：此投点仍有效，仍记入
总投点数（堆石法），但位置不
变继续投，直至位置可以变化。

这是Metropolis算法，其本质是
细致平衡条件。



边界处理：简化

如何选定游走策略，使得当行走步
数足够多时，粒子在每个方格的概
率相同？也即如何获得一个对离散
型均匀分布的抽样？



边界处理：细致平衡1
• 对每个方格进行编号，1-9. 我们希望获得在很多次游走之后的稳定分布

（平衡分布）𝜋(𝑎)
• 我们希望定出的是当粒子在一个方格a时，其下一步可到的格点（假设相

邻）的概率𝑝(𝑎 → 𝑏)
• 简化起见，我们先考虑位于边上的方格a，其相邻有三个格点b,c,d.
• 显然有归一化方程
       1 = 𝑝 𝑎 → 𝑎 + 𝑝 𝑎 → 𝑏 + 𝑝 𝑎 → 𝑐 + 𝑝(𝑎 → 𝑑)
• 以及转移方程
         𝜋 𝑎 = 𝜋 𝑎 𝑝 𝑎 → 𝑎 + 𝜋 𝑏 𝑝 𝑏 → 𝑎 + 𝜋 𝑐 𝑝 𝑐 → 𝑎 + 𝜋 𝑑 𝑝(𝑑 → 𝑎)
• 结合二者，我们可获得
         𝜋 𝑎 𝑝 𝑎 → 𝑏 + 𝜋 𝑎 𝑝 𝑎 → 𝑐 + 𝜋 𝑎 𝑝(𝑎 → 𝑑) = 𝜋 𝑏 𝑝 𝑏 → 𝑎 + 𝜋 𝑐 𝑝 𝑐 → 𝑎 + 𝜋 𝑑 𝑝(𝑑 → 𝑎)

• 细致平衡条件显然可提供一个解
 𝜋 𝑎 𝑝 𝑎 → 𝑏 = 𝜋 𝑏 𝑝 𝑏 → 𝑎  𝜋(𝑎)𝑝 𝑎 → 𝑐 = 𝜋 𝑐 𝑝 𝑐 → 𝑎      𝜋(𝑎)𝑝 𝑎 → 𝑑 = 𝜋 𝑑 𝑝 𝑑 → 𝑎  

          



边界处理：细致平衡2
• 若我们希望均匀分布，则𝑝 𝑎 → 𝑏 = 𝑝 𝑏 → 𝑎  ，即去和回的概率一样

• 这在一维也被验证过

• 上述方法也可处理角落的方格，所得结果相同

• 此结论可给出堆石法的原因

        中心处有4个方向，
每个概率为1

4
，而边处要满足细致平衡，故需𝑝 𝑎 → 𝑎 = 1/4， 也即在边上的方

格有1/4的概率留在原地；同理，角落处的方格有1/2的概率留在原地。这样获得的平衡分布才是均匀分布。

          



边界处理：转移矩阵
• 对方格进行顺序的1-9标号，之后可将所有的过程组成一个矩阵

𝑝 𝑎 → 𝑏 =
𝑝(1 → 1) ⋯ 𝑝(9 → 1)

⋮ ⋱ ⋮
𝑝(1 → 9) ⋯ 𝑝(9 → 9)

          

𝑝 𝑎 → 𝑏 =

本征值

本征矢量



边界处理：转移矩阵2
• 本征方程
                p 𝜓𝑖 = 𝜆𝑖  𝜓𝑖

• 对于任意一个初始状态𝜓𝑜𝑟𝑖,它可按照本征矢进行分解
          𝜓𝑜𝑟𝑔 = σ𝑖 𝑎𝑖𝜓𝑖

• 从而，我们可以将转移矩阵多次作用其上来获得演化过程
          p 𝜓𝑜𝑟𝑔 = 𝑝 σ𝑖 𝑎𝑖𝜓𝑖 = σ𝑖 𝑎𝑖𝜆𝑖𝜓𝑖

          𝑝𝑛 𝜓𝑜𝑟𝑔 = 𝑝𝑛 σ𝑖 𝑎𝑖𝜓𝑖 = σ𝑖 𝑎𝑖𝜆𝑖
𝑛𝜓𝑖

• 注意到，转移矩阵的本征值最大的为1，其次为3/4，当n很大时，我们有
       𝑝𝑛 𝜓𝑜𝑟𝑔 = σ𝑖 𝑎𝑖𝜆𝑖

𝑛𝜓𝑖 ≈ 𝑎1𝜓1 + 0.75𝑛 𝑎2𝜓2

      多次转移之后，分布会以指数趋于均匀分布（平衡分布）



引申：Metropolis算法
• 在之前计算圆周率的算法中，构型要么可取要么不可取，对于这种简单

的情况，我们已有讨论
• 随机游走抽样可推广至一般情形，也即不同构型有确定的概率分布𝜋 𝑎
• 此时，转移矩阵需满足

        𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎

• 证明：

情形 𝝅 𝒂 > 𝝅(𝒃) 𝝅 𝒃 > 𝝅(𝒂)

𝑝(𝑎 → 𝑏) 𝜋(𝑏)/𝜋(𝑎) 1

𝜋(𝑎)𝑝(𝑎 → 𝑏) 𝜋(𝑏) 𝜋(𝑎)

𝑝(𝑏 → 𝑎) 1 𝜋(𝑎)/𝜋(𝑏)

𝜋 𝑏 𝑝(𝑏 → 𝑎) 𝜋(𝑏) 𝜋(𝑎)



算法步骤
• 1.选取试探位置，𝑥𝑡 = 𝑥𝑛 + 𝜂𝑛,其中𝜂𝑛可为在(−𝛿, 𝛿)区间内的随机数。

• 2. 计算𝑟 = 𝜋(𝑥𝑡)/𝜋(𝑥𝑛)

• 3. 若𝑟 ≥ 1，则应接受此改变，也即𝑥𝑛+1 = 𝑥𝑡 .

• 4. 否则，产生一个（0,1）内的随机数𝜉,若𝜉 < 𝑟,则亦接受此改变，也即
𝑥𝑛+1 = 𝑥𝑡。否则, 𝑥𝑛+1 = 𝑥𝑛。

• 5.从新的位置出发走下一步，直到达到预定的总步数。



讨论

• 对于简单的正方形区域，做周期性边条件是可以的。但此方法对于一般
区域很难扩展；对于平衡分布不均匀的情况，即使在正方形区域，也应
按照Metropolis算法做推广。

• 对于原问题，在点到边界外的时候
𝜋 𝑏

𝜋 𝑎
= 0,所以此点需抛弃。在边界内的

时候
𝜋 𝑏

𝜋 𝑎
= 1（均匀分布），故肯定接受。

• 特别注意：细致平衡仅仅是充分条件，不是必要的！



先验概率
• 在前面的例子中，从某个点移至下个点时，其移动有范围要求，或者更

严谨的说，当粒子位于某个点𝑥0时，其之后的选点满足某个概率分布
 𝐴(𝑥|𝑥0)。这个概率分布是提前给出而不是后续推导获得的，也即先验概
率。

• 先验概率在随机游走抽样中普遍存在。

• 存在先验概率时，Metropolis算法需基于条件概率做进一步修改
             𝑃 𝑎 → 𝑏 = 𝐴 𝑏 𝑎  𝑝 𝑎 → 𝑏 （转移 = 选择 ∗  接受）
• 细致平衡：𝜋 𝑎 𝑃 𝑎 → 𝑏 = 𝜋 𝑏 𝑃(𝑏 → 𝑎)
• Metropolis条件：

                                𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎
∗

𝐴(𝑎|𝑏)

𝐴(𝑏|𝑎)



先验概率示例：三角形算法

• 𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎
∗

𝐴(𝑎|𝑏)

𝐴(𝑏|𝑎)
= 0 此位移不可接受！

𝐴 𝑏 𝑎 ≠ 0 𝐴 𝑎 𝑏 = 0



特殊情况

• 𝑝 𝑎 → 𝑏 = min 1,
𝜋 𝑏

𝜋 𝑎
∗

𝐴(𝑎|𝑏)

𝐴(𝑏|𝑎)

• 若𝐴 𝑎 𝑏 = 𝜋 𝑎 , 𝐴 𝑏 𝑎 = 𝜋(𝑏) 也即粒子到某个位点的先验概率与当
前位点完全无关，则有

          𝑝 𝑎 → 𝑏 = 1 永远成立
• 此时随机游走抽样完全变为直接抽样（也即在正方形内随机取点）

• 先验概率最有用的场景：我们大致可以做直接抽样，或对于某个子系
统大致可以做。此时先验概率的作用大致和微扰处理相似。



步长选择
• 步长不可太大，否则投点很容易出界，没有有效的位移点。
• 步长不可太小，否则投点会局域在初始点附近，无法在整个区域均匀分布。
• 步长应保证，大致1/2的位移被接受。

步长

误差

N=1000



应用1：变分蒙特卡罗算法

• 一般的哈密顿量本征值问题
            ෡𝐻 𝜓 = 𝐸 𝜓
• 对于基态能量，我们有

𝐸 =
⟨𝜓| ෡𝐻|𝜓⟩

⟨𝜓|𝜓⟩
≥ 𝐸0

• 在多数物理问题中，确定基态起到关键作用。而对于多体问题，由于
构型数的指数增长，基态的求解较为困难。

• 根据上式，可采用变分蒙卡，将基态求解化为求参量空间的某个最小
值，从而我们从指数型的构型空间退化到线性增长的构型空间。



算法描述

• 此算法的核心是计算能量平均值，此处可用随机游走的方法获得。

𝐸 =
⟨𝜓| ෡𝐻|𝜓⟩

⟨𝜓|𝜓⟩
≥ 𝐸0

• 重写能量均值

𝐸 =
⟨𝜓| ෡𝐻|𝜓⟩

⟨𝜓|𝜓⟩
= ∫ 𝑑𝑥𝑑𝑦𝑑𝑧 𝜌𝜓 𝐸𝜓

             𝜌𝜓 =
𝜓 2

∫ 𝑑𝑥𝑑𝑦𝑑𝑧 𝜓 2  ,      𝐸𝜓 =
෡𝐻𝜓

𝜓

• 𝜌𝜓可看做带抽样的概率分布。
• 变分法的核心：猜想一个波函数的可能形式𝜓(𝜶),其中𝜶代表一系列可

变参量。我们则应该在对波函数施加此限制之下，改变𝜶，找到对应
于最小平均能量的参量值。其对应的波函数则是我们对精确基态波函
数的近似。



蒙卡算法步骤
• 产生一个初始位置𝑥0，计算𝐸𝜓(𝑥0)

• 在(−𝛿, 𝛿)内产生一个随机数𝜂（注意，此步骤是一维情形，在高维要
把取值区间相应扩展），因当前位置为𝑥𝑛，下一个位置的试探值为
𝑥𝑡 = 𝑥𝑛 + 𝜂

• （Metropolis算法）计算𝜆 =
𝜓 𝑥𝑡

2

𝜓 𝑥𝑛
2 ,如果𝜆 > 1,则接受位置改变𝑥𝑛+1 =

𝑥𝑡 ；否则，产生一个(0,1)内的随机数𝜉,若𝜉 < 𝜆,则接受改变,𝑥𝑛+1 = 𝑥𝑡 ；
再否则， 𝑥𝑛+1 = 𝑥𝑛. 计算𝐸𝜓(𝑥𝑛+1) 。

• 从新位置出发继续游走，直到达到预定的步数。
• 求平均 𝐸 = 1/𝑁 σ𝑖 𝐸𝜓(𝑥𝑖),我们应该在参数空间最小化次平均值。
• 注意：上述求平均的过程从原理上只要产生一个初始位置即可。但实

际操作时，有可能碰到一个位置周围被多个峰包围从而走不出去的情
况，此时可产生多个初始位置分别独立行走来计算均值。



总算法步骤
• 选择初始参量值，从而确定初始试探波函数𝜓(𝜶𝟎)。
• 利用上述随机游走方法计算此试探波函数下的能量均值⟨𝐸0⟩。
• 在参数空间变化一个值，也即将𝜶𝟎 变为𝜶𝟏，获得新的能量均值⟨𝐸1⟩,若

𝐸1 < ⟨𝐸0⟩,则接受变化，以新的参量值作为起始替换𝜶𝟎 。重复此步，
直到能量均值的改变小于某个给定值。

• 注意：参量空间的变化可采用随机游走。此时，应用随机游走产生均
匀分布。



应用2：统计力学
• 目标：计算平衡态时某物理量的测量值（期望值）；

• 方法：1.选择系综。2.根据系综写出分布函数𝜌 ෡𝐻 . 3.计算平均值

𝐴 = 𝑇𝑟 መ𝐴𝜌 ෡𝐻

• 注：在明确本征态的情况下，分布函数能直接解析写出，此时只需计
算对所有态的求和或积分即可；

                在有相互作用的复杂系统，本征态不知，我们只能从每个状态的
概率𝑓(𝐻)出发，计算配分函数：Z = σ 𝑓(𝐻) 。从而𝜌 = 𝑓/𝑍
• 由于是求期望，自然可用概率算法。

• 关键：产生满足𝜌 ෡𝐻 的状态构型抽样。
• 方法：随机游走+Metropolis算法



算法思路（1）
• 1.选择初始状态𝑥0.(注：按照教材所说，此状态最好在分布密度较大的

区域。若担心初始状态会限于一个区域，也可产生一个初始状态的合
集，对里面的值分别独立进行游走）

• 2.若游走至第n步，需到第n+1步。则首先用随机方法产生一个试探状
态𝑥𝑡 = 𝑥𝑛 + 𝜂𝑛，其中𝜂𝑛 ∈ −𝛿, 𝛿 。（注：这里假设了连续状态，给
出了一个特例。但连续性不是必须的，只需把握两点：（1）下个状态
在某个范围内取值；（2）进入这个范围内的状态需要一个预先给定的
已知概率，也即先验概率。）

• 3.计算过渡概率𝑤(𝑥𝑛, 𝑥𝑡)，注意，可以不是metropolis算法。在
Metropolis算法下，我们有

                 𝑤 𝑥𝑛, 𝑥𝑡 = min 1,
𝑓 𝐻 𝑥𝑡

𝑓 𝐻 𝑥𝑛
 

• 4.产生[0,1]内的随机数𝑟



算法思路（1）
• 5. 若𝑟 ≤ 𝑤,则接受改变，也即𝑥𝑛+1 = 𝑥𝑡;  否则， 𝑥𝑛+1 = 𝑥𝑛;

• 6. 在第n+1个构型上计算估计值
              𝐴𝑛+1 = 𝐴(𝑥𝑛+1)

• 7.回到第2步往下执行，直到重复N次，共获得N个对A的估计值。

• 8. 将所有估计值相加除以N，此即为A的期望值。



例子：伊辛模型
• 模型的哈密顿量：

          𝐻 = −
𝐽

2
σ 𝑖𝑗 𝑆𝑖𝑆𝑗 − 𝐵 σ𝑖 𝑆𝑖

• 每个点的自旋只有两个选择，+1或-1，代表向上或向下。第一项为各
向同性交换场，第二项为外磁场引入的塞曼能。 𝑖𝑗 代表最近邻的两
个位点。

• 配分函数：
                   𝑍 = σ𝑆 𝑒−𝛽𝐻

• 磁化强度

                 𝑀 =
1

𝛽

𝜕 ln 𝑍

𝜕𝐵
=

1

𝑍
σ𝑆 𝑀 𝑆 𝑒−𝛽𝐻,     𝑀 𝑆 = σ𝑖 𝑆𝑖

• 通常，我们会关注M，也即𝑀 𝑆 的期望值，来看是否有自发磁化（相
变），或者关注𝑀 𝑆 的涨落，根据涨落-耗散定理，这和磁化率乘正比，
其发散行为也预示相变。



算法思路
• 选择初始构型，𝑆0 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑛}.
• 有了第m个位型𝑆𝑚后，需游走获得第m+1个位型。方法：产生一个1到n之间的整

数随机数i,将𝑠𝑖翻转，也即𝑠𝑖 = −𝑠𝑖。记此构型为试探构型𝑆𝑡。
• 根据哈密顿量计算能量差Δ𝐸 = 𝐸 𝑆𝑡 − 𝐸 𝑆𝑚 . 
• 若Δ𝐸 ≤ 0,则𝑆𝑚+1 = 𝑆𝑡.

• 否则，产生一个[0,1]内的随机数𝜉，若𝜉 ≤ 𝑒−𝛽Δ𝐸则𝑆𝑚+1 = 𝑆𝑡；否则𝑆𝑚+1 = 𝑆𝑚。
• 在每一步监控Δ𝐸的值，若在若干步内Δ𝐸的均值小于某个预设值，则我们可说系统

已到平衡态。
• 在达到平衡态之后，继续游走L步。在每一步计算𝑀(𝑆𝑖).最后获得

𝑀 =
1

𝐿
σ𝑖∈𝐸𝑞𝑢𝑎𝑙 𝑀(𝑆𝑖)

• 由于位型增长过快，体系可能整体大小不大。为消除边界效应，可采用周期边条
件。



作业

1.三点问题：
          
                1          2          3
   假设我们需使得粒子在这三个点上的概率分别为
0.2,0.5,0.3. 请设计随机游走过程加以实现，其中，每个
粒子最多只能运动到和它当前位置直接相连的格点。（1）
请给出算法步骤；（2）编写相应程序；（3）用程序游
走N步（设N=1000），统计不同格点出现的频数（画出
频数直方图即可）。
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