
蒙特卡洛算法：积分

计算物理b

高阳



一维积分问题
• 定积分

                  𝐼 = 𝑎׬

𝑏
𝑑𝑦 𝑓1(𝑦) ,  0 ≤ 𝐿 ≤ 𝑓1 𝑦 ≤ 𝑀

• “归一化”变换

                𝑓 𝑦 =
1

𝑀−𝐿
𝑓1 𝑦 − 𝐿 ,  0 ≤ 𝑓 𝑦 ≤ 1

           𝑥 =
𝑦−𝑎

𝑏−𝑎
,  𝐼 = 𝑏 − 𝑎 𝑀 − 𝐿 0׬

1
𝑑𝑥 𝑓 𝑥 + 𝐿(𝑏 − 𝑎)

• 概率算法：x是（0,1）内的均匀分布，则
               𝐼0 = 𝐸 𝑓 𝑥

• 若x按照某个概率g(x)分布，则

         𝑓∗ =
𝑓 𝑥

𝑔 𝑥
,  𝐼0 = 𝐸 𝑓∗ 𝑥



离散化
• 方差

                  𝑉 𝑓∗ = 0׬

1
𝑓⋆ − 𝐼0

2𝑔 𝑥 𝑑𝑥

• 离散撒点之后

                     𝐼0 ≈
1

𝑁
σ𝑖 𝑓∗(𝑥𝑖)

• 方差

                𝑉 =
1

𝑁
σ𝑖 𝑓∗ 𝑥𝑖

2 − 𝐼0
2 ≈

1

𝑁

• 根据中心极限定理，方差为0的话算的才是完全准确的。
• 减小方差是核心！



掷点法

• 𝐼0实际上也是在正方形内，点在曲线下的概率。
• 产生两个（0,1）上的均匀随机数𝜉1, 𝜉2

• 若𝜉1 ≤ 𝑓∗(𝜉2)，则给计数器Nu加1
• 总共产生N对数字，从中获得Nu的值。

• 𝐼0 ≈
𝑁𝑢

𝑁



优劣

• 掷点法方差
             𝑉2 = 𝑝 1 − 𝑝 = 𝐼(1 − 𝐼)
• 对比方差

             𝑉2 − 𝑉1 = 𝐼 1 − 𝐼 − 0׬

1
𝑓 𝑥 − 𝐼 2𝑑𝑥

                          = 𝐼 − 𝐼2 − 0׬

1
𝑓 𝑥 2𝑑𝑥 + 𝐼2

 = 0׬

1
𝑓 𝑥 1 − 𝑓 𝑥 𝑑𝑥 ≥ 0

        平均值法更优



特例
• 蒙卡算法的复杂性可能远超想象，其代码本身的脆弱
性也需仔细考量

• 考察下面这个很有代表性的例子：

            定义𝐼 𝛾 = 0׬

1
𝑑𝑥 𝑥𝛾 =

1

𝛾+1
, 𝛾 > −1

• 平均值法：产生(0,1)内的均匀分布的随机数𝑥,计算𝑥𝛾的
均值与方差：

1

𝑁
σ𝑖 𝑥𝑖

𝛾
= 𝑥𝛾

1

𝑁
σ𝑖 𝑥𝑖

2𝛾
= ⟨𝑥2𝛾⟩

                                 𝑠𝑡𝑑 =
𝑥2𝛾 − 𝑥𝛾 2

𝑁



代码与结果

𝜸 𝒙𝜸 ± 𝒔𝒕𝒅 𝟏/(𝜸 + 𝟏)

2 0.3342±0.0030 0.333

1 0.4963±0.0029 0.5

0 1±0 1

-0.2 1.2557±0.0033 1.25

-0.4 1.6769±0.0159 1.667

-0.5 1.9639±0.0239 2

-0.6 2.4890±0.0640 2.5

-0.8 3.9503±0.1296 5

-0.9 5.8357±0.3416 10

跑了三次里的最差结果

N=10000

由于误差的形式，N提高100倍，小数点更精确一位，
故我们确实应该获得精确到小数点后第二位的结果。
但是后两个明显有问题：即使跑多次，中心极限定理
告诉我们，每次的结果不能偏离正确值太远。问题在
哪里？？？



实时平均
这实际是收敛性检测

可以说是概率算法的噩梦情形了
为何如此？



减小方差1：重要性抽样

• 被积函数在积分域内变化很大，则方差较大，平均值
法与掷点法误差都较大。

• 考虑在取值较大的区域多投点，在取值较小的区域少
投点。

• 方法： 𝑓 𝑥 = 𝑔 𝑥
𝑓 𝑥

𝑔 𝑥
= 𝑔 𝑥 𝑓∗(𝑥)

• 𝑔 𝑥 是一个概率密度函数，它满足：（1）好抽样；
（2）在𝑓 𝑥 大的区域它也大，在𝑓 𝑥 小的区域它也小。

• 积分的估计值变为

      𝐼 ≈ 𝐸 𝑓∗ 𝑥 , 其中x按照𝑔 𝑥 分布。



多维推广

• 对于多维积分，仍然需找到适当的函数𝑔(𝒙)
• 产生多维的随机向量𝒙 = (𝑥1, ⋯ , 𝑥𝑛)
• 按照舍选法使得其满足𝑔(𝒙)的分布
• 有时可能需要做一些变量替换（比如之前讲的多维正
态分布）

• 重要性抽样的局限性：
        （1）找到满足要求的g(x)可能很难；
          （2）当g(x)在某点很小时，数值计算可能有问题，
因为待求期望的是f(x)/g(x)



例子
• 重新考察前面的积分问题

               𝐼 𝛾 = 0׬

1
𝑑𝑥 𝑥𝛾 =

1

𝛾+1
, 𝛾 > −1

• 计算方差

0׬             

1
𝑑𝑥 𝑥2𝛾 =

1

2𝛾+1
, 𝛾 >  −

1

2
; ∞, 𝛾 < −

1

2

• 用前述的样本的方差无法估计到无穷的真实方差！
• 解决：用重要性抽样方法，在被积函数较大的区域多采样。
• 算法：将被积函数分解𝑓 𝑥 = 𝑂 𝑥 𝜌(𝑥)

     其中𝜌 𝑥 = 𝑥𝜉为概率密度(𝛾 < 𝜉 < 0)），而
          𝑂 𝑥 =  𝑥𝛾−𝜉为带求量。 

𝑂 𝑥 = 𝐼 𝛾 ,  𝑂 𝑥 2 =
1

𝜉+1
0׬

1
𝑑𝑥 𝑥2𝛾−𝜉 ,只要2𝛾 − 𝜉 >  −1即可



重要性抽样示意

𝑂 𝑥 =
1

𝑁
σ𝑖 𝑂𝑖 ≈

0׬
1

𝑑𝑥 𝑂(𝑥)𝜌(𝑥)

0׬
1

𝑑𝑥 𝜌(𝑥)
=

𝜉+1

𝛾+1
=

𝐼 𝛾

𝐼 𝜉

𝑂 𝑥 2 =
1

𝑁
σ𝑖 𝑂𝑖

2 ≈
0׬

1
𝑑𝑥 𝑂 𝑥 2𝜌 𝑥

0׬
1

𝑑𝑥 𝜌 𝑥
= 𝜉 + 1 0׬

1
𝑑𝑥 𝑥2𝛾−𝜉,

                   只要2𝛾 − 𝜉 >  −1即可收敛



代码与结果
𝜸 𝝃 𝑶 ± 𝒔𝒕𝒅 𝝃 + 𝟏

𝜸 + 𝟏

-0.4 0.0 1.6785±0.0216 1.66

-0.6 -0.4 1.5058±0.0067 1.5

-0.7 -0.6 1.3237±0.0020 1.33

-0.8 -0.7 1.5135±0.0072 1.5

𝐼 −0.8 =
𝐼(−0.8)

𝐼(−0.7)

𝐼(−0.7)

𝐼(−0.6)

𝐼(−0.6)

𝐼(−0.4)

𝐼(−0.4)

𝐼(0.0)
 𝐼 0.0 = 5.0636

根据独立变量乘积的误差传递公式，我们有

𝑉 𝑂 =
0.0216

1.6785

2
+

0.0067

1.5058

2
+

0.0020

1.3237

2
+

0.0072

1.5135

2
∗ 5.06362 = 0.0054,    故𝐼 −0.8 = 5.0636 ± 0.0734完全修复了！



质量控制
• 问题引申：我们如何找到一个办法来判断是不是积分
会收敛到所需值（也即方差有限）？如何判断积分是
否收敛？

• 可用随机游走的原理加以处理

• 为粒子选定一个初始位置，让它每次按一个区间内均
匀分布的随机数来行走。

• 用metropolis算法来判定在每步行走中的真实位移，其
中用作判断的函数是𝑓 𝑥 2 (在我们的例子中是𝑥2𝛾）

• 如果方差不是有限，粒子会被困在某些发散点附近。



原因

• 按照上述方法做随机游走，我们实际上是希望获得按
照𝑓2(𝑥)分布的位型𝑥

• 若积分收敛，上述分布做归一化没有问题，我们可以
获得此种分布

• 若积分不收敛，归一化系数是1/∞，也即粒子无法处于
非发散位置。

• 可将积分区域分段 0, 𝑎1 , 𝑎1, 𝑎2 , 𝑎2, 𝑎3 , (𝑎3, 1)。
• 粒子处于每个区间的概率正比于被积函数在相应区间
的积分。

• 第一个区间包含发散点，积分为∞，故粒子无法处于其
它区间



代码与结果

位置变化

分布直方图



减小方差2：分层抽样

• 若投点不均匀，误差会增大；若起伏过大，误差也会
增大。

• 伪随机数算法在点数过少时确实均匀性很差（见之前
的课件的统计检验结果）

• 适当减小区间可以降低不均匀的问题，而在每个区间，
函数起伏一般也会变小，故小区间可能有利降低误差

• 黎曼积分的特性利于区间分划

         𝐼 = 0׬

1
𝑑𝑥𝑓 𝑥 = 0׬

𝑎
𝑓 𝑥 𝑑𝑥 + 𝑎׬

1
𝑑𝑥 𝑓(𝑥) ,  0 < 𝑎 < 1



减小方差2：做法
• 考察积分（h(x)是某种概率分布）

               𝐼 = 0׬

1
𝑑𝑥 𝑓 𝑥 = 0׬

1
𝑑𝑥 𝑔 𝑥 ℎ(𝑥)

• 分层：将区间分成J份（在0与1之间插入J-1个点）

                𝑝𝑗 = 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ(𝑥) ,  𝑗 = 1,2, ⋯ 𝐽

               ℎ𝑗 𝑥 =
ℎ 𝑥

𝑝𝑗
,  𝑥𝑗−1 ≤ 𝑥 ≤ 𝑥𝑗 ,此为在此区间归一化的概率分布

              𝐼𝑗 = 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ𝑗 𝑥 𝑔(𝑥)

• 合并：则

𝐼 = ෍

𝑗

𝑝𝑗𝐼𝑗

• 例子：均匀分布，则ℎ 𝑥 = 1, ℎ𝑗 𝑥 =
1

𝑥𝑗−𝑥𝑗−1
, 𝑝𝑗 = 𝑥𝑗 − 𝑥𝑗−1



减小方差2：如何分层
• 考察积分（h(x)是某种概率分布）

               𝐼 = 0׬

1
𝑑𝑥 𝑓 𝑥 = 0׬

1
𝑑𝑥 𝑔 𝑥 ℎ(𝑥)

• 分层：将区间分成J份（在0与1之间插入J-1个点）

                𝑝𝑗 = 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ(𝑥) ,  𝑗 = 1,2, ⋯ 𝐽

               ℎ𝑗 𝑥 =
ℎ 𝑥

𝑝𝑗
,  𝑥𝑗−1 ≤ 𝑥 ≤ 𝑥𝑗 ,此为在此区间归一化的概率分布

              𝐼𝑗 = 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ𝑗 𝑥 𝑔(𝑥)

• 合并：则

𝐼 = ෍

𝑗

𝑝𝑗𝐼𝑗

• 例子：均匀分布，则ℎ 𝑥 = 1, ℎ𝑗 𝑥 =
1

𝑥𝑗−𝑥𝑗−1
, 𝑝𝑗 = 𝑥𝑗 − 𝑥𝑗−1



减小方差2：执行
• 应在每个区间独立做积分

• 在第j个区间，以ℎ𝑗(𝑥)的概率密度抽样得一系列位型𝑥𝑗𝑖 , 𝑖 = 1,2, ⋯ , 𝑛𝑗

• 则对第j个积分的估计值为

                𝐼𝑗 ≈
1

𝑛𝑗
σ𝑖 𝑔(𝑥𝑗𝑖)

• 随机变量的理论方差为

               𝜎𝑗
2 = 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ𝑗 𝑥 𝑔 𝑥 2 − 𝐼𝑗
2

• 总随机变量的理论方差为

             𝑉 𝐼 = 𝑉 σ𝑗 𝑝𝑗𝐼𝑗 = 𝑝𝑗
2𝑉𝑗



减小方差2：对比

• 对比：若采用均值法按照ℎ(𝑥)获得一系列位型，则对积分的估计值为

                 𝐼 ≈
1

𝑁
σ𝑖 𝑔(𝑥𝑖)

• 此随机变量的理论方差为

               𝜎𝑡
2 = 0׬

1
𝑑𝑥 𝑔 𝑥 2𝑓 𝑥 − 𝐼2

• 随机变量的理论方差在分层之后的变化

              𝜎𝑡
2 = 0׬

1
𝑑𝑥 𝑔 𝑥 − 𝐼 2ℎ(𝑥) = σ𝑗 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ 𝑥 𝑔 𝑥 − 𝐼 2

                    = σ𝑗 𝑝𝑗 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ𝑗 𝑥 𝑔 𝑥 − 𝐼𝑗 + 𝐼𝑗 − 𝐼
2

                    = σ𝑗 𝑝𝑗 𝑥𝑗−1׬

𝑥𝑗 𝑑𝑥 ℎ𝑗 𝑥 𝑔 𝑥 − 𝐼𝑗
2

+ 𝐼𝑗 − 𝐼
2

+ 2(𝑔 𝑥 − 𝐼𝑗)(𝐼𝑗 − 𝐼)

             = σ𝑗 𝑝𝑗𝜎𝑗
2 + 𝑝𝑗 𝐼𝑗 − 𝐼

2



减小方差2：样本方差
• 样本方差应该采取中心极限定理中的计算方式
• 对于均值法

            𝑉 =
𝜎𝑡

2

𝑁
 ,也即单变量的方差除以总变量数。这里是将积分看成若干个独立

同分布的随机变量的和，便于讨论真实值的范围。
• 对于分层法

                    𝐼 ≈ σ𝑗
𝑝𝑗

𝑛𝑗
σ𝑖 𝑔(𝑥𝑗𝑖),  𝑉𝑠 = σ𝑗

𝑝𝑗
2

𝑛𝑗
2 σ𝑖 𝑉(𝑥𝑗𝑖) = σ𝑗

𝑝𝑗
2

𝑛𝑗
𝜎𝑗

2

• 作差

            𝑉 − 𝑉𝑠 =
1

𝑁
σ𝑗 𝑝𝑗𝜎𝑗

2 + 𝑝𝑗 𝐼𝑗 − 𝐼
2

− σ𝑗

𝑝𝑗
2

𝑛𝑗
𝜎𝑗

2

                         = σ𝑗 𝑝𝑗
1

𝑁
−

𝑝𝑗

𝑛𝑗
 𝜎𝑗

2 + σ𝑗
𝑝𝑗

𝑁
𝐼𝑗 − 𝐼

2

• 假设𝑁 = σ𝑗 𝑛𝑗



减小方差2：分层方法
• 在区间分划好之后，每个区间的抽样数应该是多少？
• 可将上式对𝑛𝑗做变分，也即对下式做变分

            𝐿 = σ𝑗 𝑝𝑗
1

𝑁
−

𝑝𝑗

𝑛𝑗
 𝜎𝑗

2 − 𝜆 σ𝑗 𝑛𝑗

•
𝜕𝐿

𝜕𝑛𝑗
=

𝑝𝑗
2

𝑛𝑗
2 𝜎𝑗

2 − 𝜆 = 0 ⇒ 𝑛𝑗 =
𝑝𝑗𝜎𝑗

𝜆

• 利用归一化σ𝑗 𝑛𝑗 = 𝑁 ⇒ 𝜆 =
σ𝑗 𝑝𝑗𝜎𝑗

𝑁

• 从而

                     𝑛𝑗 = 𝑁 ∗
𝑝𝑗𝜎𝑗

σ𝑗 𝑝𝑗𝜎𝑗

• 此时方差的差值为（这个值越大越好）

       σ𝑗 𝑝𝑗
1

𝑁
−

𝑝𝑗

𝑛𝑗
 𝜎𝑗

2 = σ𝑗
𝑝𝑗

𝑁
1 −

σ𝑗 𝑝𝑗𝜎𝑗

𝜎𝑗
𝜎𝑗

2 =
1

𝑁
σ𝑖 𝑝𝑖 σ𝑗 𝑝𝑗𝜎𝑗

2 − σ𝑖 𝑝𝑖𝜎𝑗
2

≥ 0

        σ𝑝𝑖𝜎𝑖 = σ𝑖 𝑝𝑖 𝑝𝑖𝜎𝑖 ≤ σ𝑖 𝑝𝑖 σ𝑗 𝑝𝑗𝜎𝑗
2  



减小方差2：特例

• 考察如下情形
𝑝𝑗

𝑛𝑗
=

1

𝑁
, 𝑛𝑗 = 𝑁𝑝𝑗

         方差差值的第一项为0，由第二项贡献。此时也可减少方
差。
• 均匀分布

             𝑛𝑗 =
𝑁

𝐽

• 此时也满足前述情况。故均匀分布可使方差变小，但通常
不是最优的。



分层抽样：举例

• 考察如下积分

            𝐼 = 0׬

5
𝑑𝑥 𝑥3 =

54

4
= 156.25

• 被积函数在定义域内变化较大

• 首先用均值法做抽样

               𝐼 = 5 ∗ 0׬

5
𝑑𝑥 𝑥3 1

5
 

            注意：1/5 是均匀分布的概率密度函数
• 然后用分层抽样

                 𝐼 = 0׬

1
𝑑𝑥 𝑥3 + 1׬

2
𝑑𝑥 𝑥3+ 2׬

3
𝑑𝑥 𝑥3+ 3׬

4
𝑑𝑥 𝑥3+ 4׬

5
𝑑𝑥 𝑥3



直接抽样部分

N=10000, 
参考值： 156.25
运行5次的结果如下

次数 1 2 3 4 5

结果 155.9151 152.6997 156.4348 155.3659 157.5115

偏差 -0.3349 -3.5503 0.1848 -0.8841 1.2615



均匀分层

N=10000, 每层2000
参考值： 156.25
运行5次的结果如下

次数 1 2 3 4 5

结果 156.7263 156.6907 155.7487 155.9722 156.3783

偏差 0.4763 0.4407 -0.5013 -0.2778 0.1283



实时校正的不均匀分层

N=10000, 每层2000
参考值： 156.25
运行5次的结果如下

次数 1 2 3 4 5

均匀情形 156.7263 156.6907 155.7487 155.9722 156.3783

偏差 0.4763 0.4407 -0.5013 -0.2778 0.1283

校正之后 156.6453 155.6427 156.2902 156.3982 156.3497

偏差 0.3953 -0.6073 0.0402 0.1482 0.0997

次数 1 2 3 4 5

结果 155.9151 152.6997 156.4348 155.3659 157.5115

偏差 -0.3349 -3.5503 0.1848 -0.8841 1.2615

均值法的结果



减小方差3：控制变量

• 仍然是找一个与原来函数比较接近的函数g(x)

• 相减而不是相除

           𝐼 = 𝑎׬

𝑏
𝑑𝑥 𝑓 − 𝑔 + 𝑎׬

𝑏
𝑑𝑥 𝑔(𝑥)

      后面的积分需要比较好算
      前面的被积函数起伏变小



减小方差4：对偶变量

• 变量之和的方差
           𝑉 𝑓1 + 𝑓2 = 𝑉 𝑓1 + 𝑉 𝑓2 + 2𝐸( 𝑓1 − 𝑓1 𝑓2 − 𝑓2 )
• 如果两个变量负相关，方差会变小
• 对于单调递增的函数𝑓(𝑥)，如果我们需要计算

             𝐼 = 0׬

1
𝑑𝑥 𝑓(𝑥)

• 可产生(0,1)上的均匀分布的变量𝜉𝑖，并计算

          𝐼 =
1

𝑁
σ𝑖

𝑓 𝑥𝑖 +𝑓 1−𝑥𝑖

2

• f(x)与f(1-x)是明显负相关的。
• 同样的方法也适用于单调递减的函数。



证明
• 均值法的方差为

                        V1 = 0׬

1
𝑑𝑥 𝑓 𝑥 2 − 𝐼2

• 对偶法的方差为

                   𝑉2 = 𝑉
𝑓 𝑥

2
+ 𝑉

𝑓 1−𝑥

2
+

1

2
𝐸 𝑓 𝑥 − 𝐼 𝑓 1 − 𝑥 − 𝐼

                        =
1

4
𝑉1 +

1

4
𝑉1 +

1

2
𝐸 𝑓 𝑥 − 𝐼 𝑓 1 − 𝑥 − 𝐼

• 做差 𝑉1 − 𝑉2 =
1

2
0׬

1
𝑑𝑥 𝑓 𝑥 2 −

1

2
𝐸 𝑓 𝑥 𝑓 1 − 𝑥

                                       =
1

2
σ𝑖 𝛿𝑥𝑖  𝑓 𝑥𝑖

2 −
1

2
σ𝑖 𝑓 𝑥𝑖 𝛿𝑥𝑖 𝑓 1 − 𝑥𝑖 𝛿𝑥𝑖

                                       ≥
1

2
σ𝑖 𝛿𝑥𝑖  𝑓 𝑥𝑖

2 −
1

2
(σ𝑖 𝑓 𝑥𝑖

2𝛿𝑥𝑖)(σ𝑗 𝑓 1 − 𝑥𝑗
2

𝛿𝑥𝑗)

                                       =
1

2
σ𝑖 𝛿𝑥𝑖 𝑓 𝑥𝑖

2 −
1

2
σ𝑖 𝛿𝑥𝑖 𝑓 𝑥𝑖

2

                                       = 0



多重积分

• 产生高维随机向量

• 利用分层或者重要性抽样的方法降低方差。

• 与一维积分没有本质区别。



作业

1. 教材第三章第二题中的积分，请用题中所说的重要性
抽样法计算此积分（抽样点数为10000）：（1）写出
算法过程；（2）写代码进行计算。

2. 仍然是上述积分，限制积分范围为[0,20],请用分层抽
样法计算此积分（总抽样点数为10000，任何分层抽
样法都可）：（1）写出算法过程；（2）写代码进行
计算。
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