

1. 考虑如图所示的正方形区域(0≤𝑥≤1, 0≤𝑦≤1)，：

（1）给出一种合理的三角形剖分

（2）列方程并求解𝜑(𝑥, 𝑦)在点1,2,3 处的值，其中𝜑(𝑥, 𝑦)满足如下边界条件的

拉普拉斯方程

{

∇2𝜑(𝑥, 𝑦) = 0

𝜑(𝑥, 0) = 𝜑(𝑥, 1) = 4 (𝑥 −
1

2
)
2

, 𝜑(0, 𝑦) = 𝜑(1, 𝑦) = 1

（1）

（2）①依据编号存储每个点的坐标；

 ②记录每个三角形的顶点信息，这里我选择从最小的顶点编号开始逆时针顺序存储：

如图中第 3个三角形顶点信息为[3,11,4]，分别对应三角形内第 1,2,3点；

 ③遍历每个三角形，计算 和

 ，

其中 是三角形编号，1,2,3是三角形内部顶点编号

 ④同时计算三角形面积 ；

 ⑤计算三角形内矩阵元

并将每个矩阵元素根据顶点的全局编号加到大矩阵 K 中，K 应为 的矩阵；

 ⑥处理边界，考虑线性方程组

其中 待求的三个点的值，应为 矩阵， 是边界点的值，均已给出，则可用这些已

知的值 代替，不难得出

依据此方法求得的三个点的值应为（我们同时给出利用内置函数求解的值作为参考）

 (0.2,0.7) (0.5,0.3) (0.8,0.7)

有限元 0.7174 0.4986 0.7174

内置函数 0.7067 0.5070 0.7067

我们也给出 和 的值供大家自己检验

代码我们作为参考放在最后的附录中。

附录：
MATLAB 代码：

clear;

% 格点编号

Sites = zeros(11, 2);

Sites(1, :) = [0.2, 0.7];

Sites(2, :) = [0.5, 0.3];

Sites(3, :) = [0.8, 0.7];

Sites(4, :) = [1, 1];

Sites(5, :) = [0.5, 1];

Sites(6, :) = [0, 1];

Sites(7, :) = [0, 0.5];

Sites(8, :) = [0, 0];

Sites(9, :) = [0.5, 0];

Sites(10, :) = [1, 0];

Sites(11, :) = [1, 0.5];

% 三角形编号

Tri = zeros(12, 3);

Tri(1, :) = [1, 2, 3];

Tri(2, :) = [2, 11, 3];

Tri(3, :) = [3, 11, 4];

Tri(4, :) = [3, 4, 5];

Tri(5, :) = [1, 3, 5];

Tri(6, :) = [1, 5, 6];

Tri(7, :) = [1, 6, 7];

Tri(8, :) = [1, 7, 2];

Tri(9, :) = [2, 7, 8];

Tri(10, :) = [2, 8, 9];

Tri(11, :) = [2, 9, 10];

Tri(12, :) = [2, 10, 11];

% 边界值

Phi0 = [1; 0; 1; 1; 1; 0; 1; 1];

% K矩阵

K = zeros(11);

for i = 1 : 12

 % 取出第 i个三角形的顶点编号

 T = Tri(i, :);

 % 取出各顶点的坐标

 site1 = Sites(T(1), :);

 site2 = Sites(T(2), :);

 site3 = Sites(T(3), :);

 b1 = site2(2) - site3(2);

 b2 = site3(2) - site1(2);

 b3 = site1(2) - site2(2);

 d1 = site3(1) - site2(1);

 d2 = site1(1) - site3(1);

 d3 = site2(1) - site1(1);

 % 三角形面积

 S = 1/2 * (b1 * d2 - b2 * d1);

 K(T(1), T(1)) = K(T(1), T(1)) + (b1^2 + d1^2)/(4*S);

 K(T(2), T(2)) = K(T(2), T(2)) + (b2^2 + d2^2)/(4*S);

 K(T(3), T(3)) = K(T(3), T(3)) + (b3^2 + d3^2)/(4*S);

 K(T(1), T(2)) = K(T(1), T(2)) + (b1 * b2 + d1 * d2)/(4*S);

 K(T(1), T(3)) = K(T(1), T(3)) + (b1 * b3 + d1 * d3)/(4*S);

 K(T(2), T(3)) = K(T(2), T(3)) + (b2 * b3 + d2 * d3)/(4*S);

 K(T(2), T(1)) = K(T(2), T(1)) + (b2 * b1 + d2 * d1)/(4*S);

 K(T(3), T(1)) = K(T(3), T(1)) + (b3 * b1 + d3 * d1)/(4*S);

 K(T(3), T(2)) = K(T(3), T(2)) + (b3 * b2 + d3 * d2)/(4*S);

end

% 处理边界

K11 = K(1:3, 1:3);

K12 = K(1:3, 4:11);

Phi1 = K11 \ (- K12 * Phi0);

disp(Phi1)

Python 代码：

import numpy as np

Dot = np.array([[0.2, 0.7], [0.5, 0.3], [0.8, 0.7], [0, 1], [0, 0.5],

[0, 0], [0.5, 0], [1, 0], [1, 0.5], [1, 1], [0.5, 1]])

所有的三角形

TN = np.array([[1, 4, 5], [5, 6, 2], [6, 7, 2], [2, 7, 8], [2, 8, 9],

[3, 9, 10], [3, 10, 11], [4, 1, 11], [1, 5, 2], [1, 2, 3], [3, 2, 9],

[1, 3, 11]])

边界 8个点的赋值

Pha0 = np.array([1, 1, 1, 0, 1, 1, 1, 0])

与顶点 1,2,3相关的三角形

TN1 = np.array([[1, 1, 4, 5], [9, 1, 5, 2], [10, 1, 2, 3], [12, 1, 3,

11], [8, 1, 11, 4]]) # 第一个数字对应 Ti，第 i个三角形

TN2 = np.array([[9, 2, 1, 5], [2, 2, 5, 6], [3, 2, 6, 7], [4, 2, 7, 8],

[5, 2, 8, 9], [11, 2, 9, 3], [10, 2, 3, 1]])

TN3 = np.array([[10, 3, 1, 2], [11, 3, 2, 9], [6, 3, 9, 10], [7, 3, 10,

11], [12, 3, 11, 1]])

求解每个元素对应该面积

def Sfunc(N):

 n = len(N)

 S = []

 for i in range(n):

 dot1 = N[i, 0] - 1

 dot2 = N[i, 1] - 1

 dot3 = N[i, 2] - 1

 L = np.ones((3,3))

 L[0, 1] = Dot[dot1, 0]

 L[0, 2] = Dot[dot1, 1]

 L[1, 1] = Dot[dot2, 0]

 L[1, 2] = Dot[dot2, 1]

 L[2, 1] = Dot[dot3, 0]

 L[2, 2] = Dot[dot3, 1]

 det = np.linalg.det(L)

 S.append(2*det)

 return S # 对应 4倍面积

SN = np.array(Sfunc(TN))

def Kll_fun(N):

 n = len(N)

 b = np.zeros(n)

 d = np.zeros(n)

 K = 0

 for i in range(n):

 Ti = N[i, 0] - 1

 dot1 = N[i, 2] - 1

 dot2 = N[i, 3] - 1

 b[i] = Dot[dot1, 1] - Dot[dot2, 1]

 d[i] = Dot[dot2, 0] - Dot[dot1, 0]

 K += (b[i]**2 + d[i]**2)/ SN[Ti]

 return K

def BD_TN(N):

 n = len(N)

 B = np.zeros((n,3))

 D = np.zeros((n,3))

 for i in range(n):

 dot1 = N[i, 0] - 1

 dot2 = N[i, 1] - 1

 dot3 = N[i, 2] - 1

 # 计算 B1

 b1 = Dot[dot2, 1] - Dot[dot3, 1]

 b2 = Dot[dot3, 1] - Dot[dot1, 1]

 b3 = Dot[dot1, 1] - Dot[dot2, 1]

 B[i, 0] = b1

 B[i, 1] = b2

 B[i, 2] = b3

 # 计算 D1

 d1 = Dot[dot3, 0] - Dot[dot2, 0]

 d2 = Dot[dot1, 0] - Dot[dot3, 0]

 d3 = Dot[dot2, 0] - Dot[dot1, 0]

 D[i, 0] = d1

 D[i, 1] = d2

 D[i, 2] = d3

 return B, D

B_TN, D_TN = BD_TN(TN)

def Klm_fun(l, m):

 indices = [index for index, row in enumerate(TN) if l in row and m

in row]

 N_T = np.array(indices)

 n = len(N_T)

 sum = 0

 for i in range(n):

 Ti = N_T[i]

 for j in range(3):

 if TN[Ti, j] == l:

 bl = B_TN[Ti, j]

 dl = D_TN[Ti, j]

 for k in range(3):

 if TN[Ti, k] == m:

 bm = B_TN[Ti, k]

 dm = D_TN[Ti, k]

 sum += (bl*bm + dl*dm) / SN[Ti]

 return sum

#print(Klm_fun(1,2))

K = np.zeros((3, 11))

K[0, 0] = Kll_fun(TN1)

K[1, 1] = Kll_fun(TN2)

K[2, 2] = Kll_fun(TN3)

for i in range(3):

 for j in range(11):

 if j != i:

 K[i, j] = Klm_fun(i + 1, j + 1)

print(K)

K11 = K[:, :3] # 前 3 列

K12 = K[:, 3:] # 后 8 列

P = np.dot(K12, Pha0)

Pha = np.linalg.solve(K11, -P)

print(Pha)

