
 

 

1. 考虑如图所示的正方形区域(0≤𝑥≤1, 0≤𝑦≤1)，： 

 

（1）给出一种合理的三角形剖分 

（2）列方程并求解𝜑(𝑥, 𝑦)在点1,2,3 处的值，其中𝜑(𝑥, 𝑦)满足如下边界条件的

拉普拉斯方程 

{

∇2𝜑(𝑥, 𝑦) = 0

𝜑(𝑥, 0) = 𝜑(𝑥, 1) = 4 (𝑥 −
1

2
)
2

,   𝜑(0, 𝑦) = 𝜑(1, 𝑦) = 1
 

 

（1） 

（2）①依据编号存储每个点的坐标； 

  ②记录每个三角形的顶点信息，这里我选择从最小的顶点编号开始逆时针顺序存储：

如图中第 3个三角形顶点信息为[3,11,4]，分别对应三角形内第 1,2,3点； 

  ③遍历每个三角形，计算 和  

 ，  



 

 

其中 是三角形编号，1,2,3是三角形内部顶点编号 

  ④同时计算三角形面积 ； 

  ⑤计算三角形内矩阵元 

  

并将每个矩阵元素根据顶点的全局编号加到大矩阵 K 中，K 应为 的矩阵； 

  ⑥处理边界，考虑线性方程组 

  

其中 待求的三个点的值，应为 矩阵， 是边界点的值，均已给出，则可用这些已

知的值 代替，不难得出 

  

依据此方法求得的三个点的值应为（我们同时给出利用内置函数求解的值作为参考） 

 (0.2,0.7) (0.5,0.3) (0.8,0.7) 

有限元 0.7174 0.4986 0.7174 

内置函数 0.7067 0.5070 0.7067 

 

我们也给出 和 的值供大家自己检验 

  

  

代码我们作为参考放在最后的附录中。 

 

 

 

 

 

 

 

 

 

 



 

 

附录： 
MATLAB 代码： 

clear; 

 

% 格点编号 

Sites = zeros(11, 2); 

Sites(1, :) = [0.2, 0.7]; 

Sites(2, :) = [0.5, 0.3]; 

Sites(3, :) = [0.8, 0.7]; 

Sites(4, :) = [1, 1]; 

Sites(5, :) = [0.5, 1]; 

Sites(6, :) = [0, 1]; 

Sites(7, :) = [0, 0.5]; 

Sites(8, :) = [0, 0]; 

Sites(9, :) = [0.5, 0]; 

Sites(10, :) = [1, 0]; 

Sites(11, :) = [1, 0.5]; 

 

% 三角形编号 

Tri = zeros(12, 3); 

Tri(1, :) = [1, 2, 3]; 

Tri(2, :) = [2, 11, 3]; 

Tri(3, :) = [3, 11, 4]; 

Tri(4, :) = [3, 4, 5]; 

Tri(5, :) = [1, 3, 5]; 

Tri(6, :) = [1, 5, 6]; 

Tri(7, :) = [1, 6, 7]; 

Tri(8, :) = [1, 7, 2]; 

Tri(9, :) = [2, 7, 8]; 

Tri(10, :) = [2, 8, 9]; 

Tri(11, :) = [2, 9, 10]; 

Tri(12, :) = [2, 10, 11]; 

 

% 边界值 

Phi0 = [1; 0; 1; 1; 1; 0; 1; 1]; 

 

% K矩阵 

K = zeros(11); 

for i = 1 : 12 

    % 取出第 i个三角形的顶点编号 

    T = Tri(i, :); 

 

    % 取出各顶点的坐标 



 

 

    site1 = Sites(T(1), :); 

    site2 = Sites(T(2), :); 

    site3 = Sites(T(3), :); 

 

    b1 = site2(2) - site3(2); 

    b2 = site3(2) - site1(2); 

    b3 = site1(2) - site2(2); 

 

    d1 = site3(1) - site2(1); 

    d2 = site1(1) - site3(1); 

    d3 = site2(1) - site1(1); 

     

    % 三角形面积 

    S = 1/2 * (b1 * d2 - b2 * d1);  

 

    K(T(1), T(1)) = K(T(1), T(1)) + (b1^2 + d1^2)/(4*S); 

    K(T(2), T(2)) = K(T(2), T(2)) + (b2^2 + d2^2)/(4*S); 

    K(T(3), T(3)) = K(T(3), T(3)) + (b3^2 + d3^2)/(4*S); 

    K(T(1), T(2)) = K(T(1), T(2)) + (b1 * b2 + d1 * d2)/(4*S); 

    K(T(1), T(3)) = K(T(1), T(3)) + (b1 * b3 + d1 * d3)/(4*S); 

    K(T(2), T(3)) = K(T(2), T(3)) + (b2 * b3 + d2 * d3)/(4*S); 

    K(T(2), T(1)) = K(T(2), T(1)) + (b2 * b1 + d2 * d1)/(4*S); 

    K(T(3), T(1)) = K(T(3), T(1)) + (b3 * b1 + d3 * d1)/(4*S); 

    K(T(3), T(2)) = K(T(3), T(2)) + (b3 * b2 + d3 * d2)/(4*S); 

 

end 

 

% 处理边界 

K11 = K(1:3, 1:3); 

K12 = K(1:3, 4:11); 

Phi1 = K11 \ (- K12 * Phi0); 

disp(Phi1) 

 

Python 代码： 

import numpy as np 

 

Dot = np.array([[0.2, 0.7], [0.5, 0.3], [0.8, 0.7], [0, 1], [0, 0.5], 

[0, 0], [0.5, 0], [1, 0], [1, 0.5], [1, 1], [0.5, 1]]) 

# 所有的三角形 

TN = np.array([[1, 4, 5], [5, 6, 2], [6, 7, 2], [2, 7, 8], [2, 8, 9], 

[3, 9, 10], [3, 10, 11], [4, 1, 11], [1, 5, 2], [1, 2, 3], [3, 2, 9], 

[1, 3, 11]]) 

 

# 边界 8个点的赋值 



 

 

Pha0 = np.array([1, 1, 1, 0, 1, 1, 1, 0]) 

 

# 与顶点 1,2,3相关的三角形 

TN1 = np.array([[1, 1, 4, 5], [9, 1, 5, 2], [10, 1, 2, 3], [12, 1, 3, 

11], [8, 1, 11, 4]])  # 第一个数字对应 Ti，第 i个三角形 

TN2 = np.array([[9, 2, 1, 5], [2, 2, 5, 6], [3, 2, 6, 7], [4, 2, 7, 8], 

[5, 2, 8, 9], [11, 2, 9, 3], [10, 2, 3, 1]]) 

TN3 = np.array([[10, 3, 1, 2], [11, 3, 2, 9], [6, 3, 9, 10], [7, 3, 10, 

11], [12, 3, 11, 1]]) 

 

# 求解每个元素对应该面积 

def Sfunc(N): 

    n = len(N) 

    S = [] 

    for i in range(n): 

        dot1 = N[i, 0] - 1 

        dot2 = N[i, 1] - 1 

        dot3 = N[i, 2] - 1 

        L = np.ones((3,3)) 

        L[0, 1] = Dot[dot1, 0] 

        L[0, 2] = Dot[dot1, 1] 

        L[1, 1] = Dot[dot2, 0] 

        L[1, 2] = Dot[dot2, 1] 

        L[2, 1] = Dot[dot3, 0] 

        L[2, 2] = Dot[dot3, 1] 

        det = np.linalg.det(L) 

        S.append(2*det) 

    return S  # 对应 4倍面积 

SN = np.array(Sfunc(TN)) 

 

def Kll_fun(N): 

    n = len(N) 

    b = np.zeros(n) 

    d = np.zeros(n) 

    K = 0 

    for i in range(n): 

        Ti = N[i, 0] - 1 

        dot1 = N[i, 2] - 1 

        dot2 = N[i, 3] - 1 

        b[i] = Dot[dot1, 1] - Dot[dot2, 1] 

        d[i] = Dot[dot2, 0] - Dot[dot1, 0] 

        K += (b[i]**2 + d[i]**2)/ SN[Ti] 

    return K 

 



 

 

 

 

def BD_TN(N): 

    n = len(N) 

    B = np.zeros((n,3)) 

    D = np.zeros((n,3)) 

    for i in range(n): 

        dot1 = N[i, 0] - 1 

        dot2 = N[i, 1] - 1 

        dot3 = N[i, 2] - 1 

        # 计算 B1 

        b1 = Dot[dot2, 1] - Dot[dot3, 1] 

        b2 = Dot[dot3, 1] - Dot[dot1, 1] 

        b3 = Dot[dot1, 1] - Dot[dot2, 1] 

        B[i, 0] = b1 

        B[i, 1] = b2 

        B[i, 2] = b3 

        # 计算 D1 

        d1 = Dot[dot3, 0] - Dot[dot2, 0] 

        d2 = Dot[dot1, 0] - Dot[dot3, 0] 

        d3 = Dot[dot2, 0] - Dot[dot1, 0] 

        D[i, 0] = d1 

        D[i, 1] = d2 

        D[i, 2] = d3 

    return B, D 

B_TN, D_TN = BD_TN(TN) 

 

 

def Klm_fun(l, m): 

    indices = [index for index, row in enumerate(TN) if l in row and m 

in row] 

    N_T = np.array(indices) 

    n = len(N_T) 

    sum = 0 

    for i in range(n): 

        Ti = N_T[i] 

        for j in range(3): 

            if TN[Ti, j] == l: 

                bl = B_TN[Ti, j] 

                dl = D_TN[Ti, j] 

                for k in range(3): 

                    if TN[Ti, k] == m: 

                        bm = B_TN[Ti, k] 

                        dm = D_TN[Ti, k] 



 

 

        sum += (bl*bm + dl*dm) / SN[Ti] 

    return sum 

 

#print(Klm_fun(1,2)) 

 

K = np.zeros((3, 11)) 

K[0, 0] = Kll_fun(TN1) 

K[1, 1] = Kll_fun(TN2) 

K[2, 2] = Kll_fun(TN3) 

for i in range(3): 

    for j in range(11): 

        if j != i: 

            K[i, j] = Klm_fun(i + 1, j + 1) 

 

print(K) 

 

K11 = K[:, :3]  # 前 3 列 

K12 = K[:, 3:]  # 后 8 列 

 

P = np.dot(K12, Pha0) 

Pha = np.linalg.solve(K11, -P) 

print(Pha) 


