
有限差分法

计算物理b

高阳



背景
• 一维常微分方程

𝑑2𝜙

𝑑𝑥2 + 𝑓 𝑥
𝑑𝜙

𝑑𝑥
+ 𝑔 𝑥 𝜙 = ℎ(𝑥)

• 例子：有阻尼的简谐振动
                
• 高维偏微分方程（二维或三维）

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 + 𝑝 𝑥, 𝑦
𝜕𝜙

𝜕𝑥
+ 𝑞 𝑥, 𝑦

𝜕𝜙

𝜕𝑦
+ 𝑉(𝑥, 𝑦) 𝜙 = ℎ(𝑥, 𝑦)

• 例子：泊松方程

• 也可含时，如扩散方程



思路(1)
• （1）连续变离散：在待解区域D中做网格分化，并标记其中的网格点；
将求解𝜙(𝑥, 𝑦)转换为求解𝜙𝑖

• （2）微分变差分：核心就是泰勒展开。以一维为例：
        若待解区间是[a,b]，将其均匀的分割，记𝑥𝑗是其中的某个格点，其左
边点𝑥𝑗−1与右边点𝑥𝑗+1与其间隔均为h,则

            𝜙 𝑥𝑗+1 = 𝜙 𝑥𝑗 + 𝜙′ 𝑥𝑗  ℎ +
1

2
𝜙′′ 𝑥𝑗  ℎ2 +

1

6
𝜙 3 𝑥𝑗  ℎ3 +

1

24
𝜙(4) 𝑥𝑗  ℎ4 + 𝑂 ℎ5

                  𝜙 𝑥𝑗−1 = 𝜙 𝑥𝑗 − 𝜙′ 𝑥𝑗  ℎ +
1

2
𝜙′′ 𝑥𝑗  ℎ2 −

1

6
𝜙 3 𝑥𝑗  ℎ3 +

1

24
𝜙(4) 𝑥𝑗  ℎ4 + 𝑂 ℎ5

从而有    

           𝜙′ 𝑥𝑗 =
𝜙 𝑥𝑗+1 −𝜙(𝑥𝑗)

ℎ
+ 𝑂 ℎ =

𝜙 𝑥𝑗 −𝜙(𝑥𝑗−1)

ℎ
+ 𝑂 ℎ

                       =
𝜙 𝑥𝑗+1 −𝜙 𝑥𝑗−1

2ℎ
+ 𝑂 ℎ2

      未知数与方程数目匹配可依次消除高阶误差，但不一定是最好的。



二阶偏导
• 一维

𝜙′′ 𝑥𝑗 =
𝜙 𝑥𝑗+1 + 𝜙 𝑥𝑗−1 − 2𝜙(𝑥𝑗)

ℎ2
+ 𝑂 ℎ2

• 二维：均匀分割

                     ∇2𝜙 =
𝜙1+𝜙2+𝜙3+𝜙4−4𝜙0

ℎ2 + 𝑂(ℎ2)

• 如果两条分割线有夹角呢？
              方程数目不够，无法确定



不均匀分割

• 如何确定差分格式？           
• 考察x方向
          𝜙𝑖+1𝑗 = 𝜙𝑖𝑗 +

𝜕𝜙

𝜕𝑥 𝑖𝑗
 ℎ1 +

1

2

𝜕2𝜙

𝜕𝑥2
𝑖𝑗

ℎ1
2 +

1

6

𝜕3𝜙

𝜕𝑥3
𝑖𝑗

ℎ1
3 + 𝑂 ℎ1

4

              𝜙𝑖−1𝑗 = 𝜙𝑖𝑗 −
𝜕𝜙

𝜕𝑥 𝑖𝑗
 ℎ3 +

1

2

𝜕2𝜙

𝜕𝑥2
𝑖𝑗

ℎ3
2 −

1

6

𝜕3𝜙

𝜕𝑥3
𝑖𝑗

ℎ3
3 + 𝑂 ℎ3

4

• 加权并组合
     𝛼 𝜙𝑖+1𝑗 − 𝜙𝑖𝑗 + 𝛽 𝜙𝑖−1𝑗 − 𝜙𝑖𝑗 =

𝜕𝜙

𝜕𝑥 𝑖𝑗
𝛼ℎ1 − 𝛽ℎ3 +

1

2

𝜕2𝜙

𝜕𝑥2
𝑖𝑗

𝛼ℎ1
2 + 𝛽ℎ3

2 +
1

6

𝜕3𝜙

𝜕𝑥3
𝑖𝑗

(𝛼ℎ1
3 − 𝛽ℎ3

3)

• 对一阶偏导的差分格式
       向前 𝜕𝜙

𝜕𝑥 𝑖𝑗
=

𝜙𝑖+1𝑗−𝜙𝑖𝑗

ℎ1
+ 𝑂(ℎ1)

       向后 𝜕𝜙

𝜕𝑥 𝑖𝑗
=

𝜙𝑖𝑗−𝜙𝑖−1𝑗

ℎ3
+ 𝑂(ℎ3)

ℎ1

ℎ2
ℎ3

ℎ4

𝑖𝑗 𝑖 + 1𝑗𝑖 − 1𝑗

𝑖𝑗 + 1

𝑖𝑗 − 1



中间差分格式
• 加权式
       𝛼 𝜙𝑖+1𝑗 − 𝜙𝑖𝑗 + 𝛽 𝜙𝑖−1𝑗 − 𝜙𝑖𝑗 =

𝜕𝜙

𝜕𝑥 𝑖𝑗
𝛼ℎ1 − 𝛽ℎ3 +

1

2

𝜕2𝜙

𝜕𝑥2
𝑖𝑗

𝛼ℎ1
2 + 𝛽ℎ3

2 +
1

6

𝜕3𝜙

𝜕𝑥3
𝑖𝑗

(𝛼ℎ1
3 − 𝛽ℎ3

3)           

• 选择系数使得二阶偏导项前系数为零：

                                𝛼ℎ1
2 + 𝛽ℎ3

2 = 0 ⇒  𝛼 = −𝛽
ℎ3

2

ℎ1
2

• 忽略掉三次项，得到一阶偏导的差分格式
𝜕𝜙

𝜕𝑥 𝑖𝑗
=

𝛼 𝜙𝑖+1𝑗−𝜙𝑖𝑗 +𝛽 𝜙𝑖−1𝑗−𝜙𝑖𝑗

𝛼ℎ1−𝛽ℎ3
=

ℎ3
2 𝜙𝑖+1𝑗−𝜙𝑖𝑗 −ℎ1

2(𝜙𝑖−1𝑗−𝜙𝑖𝑗)

ℎ1ℎ3(ℎ1+ℎ3)
+ 𝑂(ℎ1ℎ3)

• 同理，可处理二阶偏导，此时应使得一阶项前系数为零
                           𝛼ℎ1 − 𝛽ℎ3 = 0

𝜕2𝜙

𝜕𝑥2
𝑖𝑗

=
2

𝛼ℎ1
2+𝛽ℎ3

2 𝛼 𝜙𝑖+1𝑗 − 𝜙𝑖𝑗 + 𝛽 𝜙𝑖−1𝑗 − 𝜙𝑖𝑗 =
2 ℎ3 𝜙𝑖+1𝑗−𝜙𝑖𝑗 +ℎ1 𝜙𝑖−1𝑗−𝜙𝑖𝑗

ℎ1ℎ3(ℎ1+ℎ3)
+ 𝑂(ℎ1 − ℎ3)

        在ℎ1 = ℎ3时皆可退回到之前的形式与精度。



完整格式
• 以如下方程为例

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 + 𝑉(𝑥, 𝑦) 𝜙 = ℎ(𝑥, 𝑦)

• 一般情形
2 ℎ3 𝜙𝑖+1𝑗−𝜙𝑖𝑗 +ℎ1 𝜙𝑖−1𝑗−𝜙𝑖𝑗

ℎ1ℎ3(ℎ1+ℎ3)
+

2 ℎ4 𝜙𝑖𝑗+1−𝜙𝑖𝑗 +ℎ2 𝜙𝑖𝑗−1−𝜙𝑖𝑗

ℎ2ℎ4(ℎ2+ℎ4)
+ 𝑉𝑖𝑗𝜙𝑖𝑗 = ℎ𝑖𝑗

• 假设方形区域，x方向和y方向各自是均匀分割，格点间距分别为ℎ𝑥和
ℎ𝑦：

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 =
𝜙𝑖+1𝑗+𝜙𝑖−1𝑗−2𝜙𝑖𝑗

ℎ𝑥
2 +

𝜙𝑖𝑗−1+𝜙𝑖𝑗+1−2𝜙𝑖𝑗

ℎ𝑦
2

• 完整格式

𝜙𝑖+1𝑗+𝜙𝑖−1𝑗−2𝜙𝑖𝑗

ℎ𝑥
2 +

𝜙𝑖𝑗−1+𝜙𝑖𝑗+1−2𝜙𝑖𝑗

ℎ𝑦
2 + 𝑉𝑖𝑗  𝜙𝑖𝑗 = ℎ𝑖𝑗

     



边条件
• 一般的边条件

                       𝜙ȁ𝜕𝐷 + 𝑔1 𝑠
𝜕𝜙

𝜕𝑛
ȁ𝜕𝐷 = 𝑔2(𝑠)

• 第一类边条件（Dirichlet问题）：
                                       𝜙ȁ𝜕𝐷 = 𝑔(𝑠)

• 第二类边条件（Neumann问题）：
𝜕𝜙

𝜕𝑛
ȁ𝜕𝐷 = 𝑔(𝑠)

• 第三类边条件（混合问题）： 𝑔1 𝑠 ≠ 0, 𝑔2 𝑠 ≠ 0

                      
     



边界处理I
• 背景：边界不与分割线重合，使得边界上没有（或有很少）格点
• 核心：以某种方式用到边界上的给定函数值
• 第一类边条件（函数赋值型）
• 方法一：直接转移

         若ℎ1 < ℎ2,  𝜙0 = 𝜙1 注：𝜙1 = 𝑔 𝑠1

          反之， 𝜙0 = 𝜙2 注：𝜙1 = 𝑔 𝑠2

• 方法二：线性插值
若ℎ1 < ℎ2，将0作x方向的插值

      利用中间差分格式： 𝛼 𝜙1 − 𝜙0 + 𝛽 𝜙3 − 𝜙0 =
𝜕𝜙

𝜕𝑥 0
𝛼ℎ1 − 𝛽ℎ +

1

2

𝜕2𝜙

𝜕𝑥2
0

𝛼ℎ1
2 + 𝛽ℎ2

          此时，我们的目的不是在0的偏导，而是0处的函数值本身，所以令𝛼ℎ1 − 𝛽ℎ = 0即可

                         𝜙0 =
𝛼𝜙1+𝛽𝜙3

𝛼+𝛽
+ 𝑂

𝛼ℎ1
2+𝛽ℎ2

𝛼+𝛽
=

ℎ𝜙1+ℎ1𝜙3

ℎ+ℎ1
+ 𝑂 ℎℎ1  

2

0

1

4

3

ℎ
ℎ

ℎ2

ℎ1



边界处理II
• 双向插值：利用不均匀差分格式

2 ℎ3 𝜙𝑖+1𝑗−𝜙𝑖𝑗 +ℎ1 𝜙𝑖−1𝑗−𝜙𝑖𝑗

ℎ1ℎ3(ℎ1+ℎ3)
+

2 ℎ4 𝜙𝑖𝑗+1−𝜙𝑖𝑗 +ℎ2 𝜙𝑖𝑗−1−𝜙𝑖𝑗

ℎ2ℎ4(ℎ2+ℎ4)
+ 𝑉𝑖𝑗𝜙𝑖𝑗 = ℎ𝑖𝑗

• 代入ℎ3 = ℎ4 = ℎ
2

ℎ1(ℎ1+ℎ3)
𝜙1 +

2

ℎ3(ℎ1+ℎ3)
𝜙3 +

2

ℎ2(ℎ2+ℎ4)
𝜙2 +

2

ℎ4(ℎ2+ℎ4)
𝜙4

            −
2

h1h3
+

2

h2h4
𝜙0 + 𝑉0𝜙0 = ℎ0

• 进一步可令ℎ1 = 𝛼ℎ, ℎ2 = 𝛽ℎ 做化简

• 双向插值利用了原方程。为何这种方式误差更低？
• 考虑如下例子
             已知𝑦 𝑥 = 0 = 0， 𝑦 𝑥 = 0.1 = 0.001，求𝑦(𝑥 = 0.05)

             （1）线性插值 𝑦 𝑥 = 0.05 =
0.001−0

0.1−0
∗ 0.05 = 5 ∗ 10−4

（2）若额外知道y满足的微分方程为𝑥
𝑑𝑦

𝑑𝑥
= 3𝑦，则𝑦 𝑥 = 0.05 =

0.001

0.1
∗ 0.05 ∗

1

3
= 1.67 ∗ 10−4

             这个微分方程的解实际为𝑦 = 𝑥3，故真实值为𝑦 𝑥 = 0.05 = 1.25 ∗ 10−4

             确实更精确了，原因：当知道微分方程之后，同样的斜率近似可额外获得高阶导数信息。

2

0

1

4

3

ℎ
ℎ

ℎ2

ℎ1



边界处理III
• 双向插值原因：原方程

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 + 𝑉(𝑥, 𝑦) 𝜙 = ℎ(𝑥, 𝑦)

          单向插值的格式

          𝛼 𝜙1 − 𝜙0 + 𝛽 𝜙3 − 𝜙0 =
𝜕𝜙

𝜕𝑥 0
𝛼ℎ1 − 𝛽ℎ +

1

2

𝜕2𝜙

𝜕𝑥2
0

𝛼ℎ1
2 + 𝛽ℎ2

条件𝛼ℎ1 − 𝛽ℎ = 0

• 若能进一步获得
𝜕2𝜙

𝜕𝑥2
0
的值，显然误差会更小

• 而此二阶偏导可结合原方程关联至当地的函数值上
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = −𝑉 𝑥, 𝑦 𝜙 + ℎ(𝑥, 𝑦)

2

0

1

4

3

ℎ
ℎ

ℎ2

ℎ1



重访随机游走法
• 离散化方程𝜙 = 𝑃𝜙 + 𝐴
• 1. 对于矩阵P：考虑𝑝𝑖𝑗其中i不在边界上，则𝑝𝑖𝑗 = 1/4或0：
• 2.对于矩阵P：考虑𝑝𝑖𝑗其中i在边界上，则𝑝𝑖𝑗 = 0

• P是转移矩阵

• 对于复杂边条件,若i是不紧邻边界的点，则无变化
• 若i是紧邻边界的点，如此时的0点，考察双向差分格式
           仍假设泊松方程，也即V(x,y)=0

           𝜙0 = −
ℎ0

2

ℎ1ℎ2ℎ3ℎ4

ℎ1ℎ3+ℎ2ℎ4
+ 𝛼𝜙1 + 𝛽𝜙2 + 𝛾𝜙3 + 𝛿𝜙4

       𝛼 =
ℎ2ℎ3ℎ4

(ℎ1+ℎ3)(ℎ1ℎ3+ℎ2ℎ4)
,  𝛽 =

ℎ1ℎ2ℎ4

(ℎ1+ℎ3)(ℎ1ℎ3+ℎ2ℎ4)
 ,  𝛾 =

ℎ1ℎ3ℎ4

(ℎ2+ℎ4)(ℎ1ℎ3+ℎ2ℎ4)

       𝛿 =
ℎ1ℎ2ℎ3

(ℎ2+ℎ4)(ℎ1ℎ3+ℎ2ℎ4)

    可检验 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1
• 仍然可写出转移矩阵！只是此行的矩阵元不再是1/4和0，而是𝛼， 𝛽 , 𝛾 , 𝛿和0
• 仍然可以用随机游走的方法，走到边界停止即可。

2

0

1

4

3

ℎ
ℎ

ℎ2

ℎ1



边界处理：2类和3类
• 第二类与第三类边条件

𝜕𝜙

𝜕 ො𝑛
+ 𝛼𝜙 ȁ𝜕𝐷 = 𝑔

           关键是获得对法向偏导的近似
• 方法一：直接转移法

𝜕𝜙

𝜕𝑛
ȁ𝑄 =

𝜕𝜙

𝜕𝑛
ȁ𝑂 + 𝑂(ℎ)

• 从O向线段𝑄1𝑄2做垂线，可用解析方法获得垂足Q的坐标。
• 反向延伸垂线，与网格交于P点。
• 获得O点的偏导：利用P点的函数值做单向差分格式

𝜕𝜙

𝜕𝑛
ȁ𝑂 =

𝜙𝑂−𝜙𝑃

𝑎ℎ
+ 𝑂(ℎ)   （注意减号的左右，要算向外偏导）

• P点函数值：插值
             𝜙𝑃 = 𝑐𝜙𝑅 + 𝑏𝜙𝑉 + 𝑂(ℎ2)
• 最终获得

𝜕𝜙

𝜕𝑛
ȁ𝑄 =

1

𝑎ℎ
𝜙𝑂 − 𝑐𝜙𝑅 − 𝑏𝜙𝑉 + 𝑂(ℎ)

• 进一步用𝜙𝑂近似𝜙𝑄（为何？），则可获得如下方程
1

𝑎ℎ
𝜙𝑂 − 𝑐𝜙𝑅 − 𝑏𝜙𝑉 + 𝛼(𝑄)𝜙𝑂 = 𝑔(𝑄)  

𝑎ℎ
0𝑏ℎ

𝑐ℎ𝑃

𝑉

𝑄

𝑅

𝑄1

𝑄2



边界处理：特殊情形
• 若𝑄1𝑄2与网格线平行，比如与y方向平行，则P点与R点重合
• 则

𝜕𝜙

𝜕𝑛
ȁ𝑂 =

𝜙𝑂−𝜙𝑃

𝑎ℎ
+ 𝑂 ℎ =

𝜙𝑂−𝜙𝑅

ℎ
+ 𝑂 ℎ

• O点的完整差分格式为
1

ℎ
𝜙𝑂 − 𝜙𝑅 + 𝛼(𝑄)𝜙𝑂 = 𝑔(𝑄)  

• 若𝑄1𝑄2与网格线平行，比如与y方向平行，则P点与S点重合
𝜕𝜙

𝜕𝑛
ȁ𝑂 =

𝜙𝑂−𝜙𝑃

𝑎ℎ
+ 𝑂 ℎ =

𝜙𝑂−𝜙𝑆

ℎ
+ 𝑂 ℎ

• O点的完整差分格式为
1

ℎ
𝜙𝑂 − 𝜙𝑆 + 𝛼(𝑄)𝜙𝑂 = 𝑔(𝑄)  

𝑎ℎ
0𝑏ℎ

𝑐ℎ𝑃

𝑉

𝑄

𝑅

𝑄1

𝑄2

𝑆



边界处理：积分法I
• 思考：在第一类中，利用微分方程的双向插值法精度较高，
                       如何在第二和第三类中利用？
• 以第二类为例：可用积分法

• 考察如图所示的一个简单情形，其余情况可以此类推。
• K为方形OBCS的中心点，从其出发向上与向右做网格垂线，
           交点已标记
• 原方程为
                                   ∇2𝜙 = −𝑉 𝑥, 𝑦 𝜙 + ℎ(𝑥, 𝑦)
• 在弧形三角形MKN中（或者多边形MKNQPM中)，根据高斯定理

                 ∫ ∇2𝜙 𝑑𝑆 = ׯ
𝜕𝜙

𝜕𝑛
 𝑑ℓ

• 左边
                       ∫ ∇2𝜙 𝑑𝑆 = ∫ −𝑉𝜙 + ℎ 𝑑𝑆 = 𝐴𝑟𝑒𝑎𝑀𝐾𝑁𝑄𝑃𝑀  ∗ (−𝑉0𝜙0 + ℎ0)
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边界处理：积分法II
• 右边

ׯ            
𝜕𝜙

𝜕𝑛
 𝑑ℓ =

𝜙𝐵−𝜙𝑂

ℎ
∗ 𝑀𝐾 +

𝜙𝑆−𝜙𝑂

ℎ
∗ 𝐾𝑁 + ∫𝑀𝑃𝑄𝑁

𝜕𝜙

𝜕𝑛
𝑑ℓ

• 利用边条件
𝜕𝜙

𝜕𝑛
= 𝑔 − 𝛼𝜙

• 所以

                  ∫𝑀𝑃𝑄𝑁

𝜕𝜙

𝜕𝑛
𝑑ℓ = ∫𝑀𝑃𝑄𝑁

(𝑔 − 𝛼𝜙) 𝑑ℓ

                                         =
1

2
𝑔𝑀 + 𝑔𝑃 − 𝛼𝜙𝑀 − 𝛼𝜙𝑃 ∗ 𝑀𝑃 +

1

2
𝑔𝑃 + 𝑔𝑄 − 𝛼𝜙𝑃 − 𝛼𝜙𝑄 ∗ 𝑃𝑄

                                              + 𝑔𝑄 + 𝑔𝑁 − 𝛼𝜙𝑄 − 𝛼𝜙𝑁 ∗ 𝑄𝑁

• 若𝛼 = 0,则令左边=右边，已可建立O的差分格式。

• 若𝛼 ≠ 0,则还需结合之前对第一类边条件的处理来建立额外的方程
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作业

1. 教材第四章第一题，采取均匀分割，x和y方向各分20
份,用Gauss-Seidel迭代法求解。给出代码，并画出区域里
的等高线图。
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