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The boundary element method is also applicable to non-stationary problems:
time integration is performed separately. A superb introduction is given in [12].
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10.6 Finite-Element Method

Finite-element methods (FEM) are five decades old, yet they remain the basic tool of
engineers and natural scientists, especially for problems in elastomechanics, hydro-
and aero-dynamics in complex geometries. In difference methods we use finite dif-
ferences to approximate the differential equation, i.e. its space and time derivatives,
and impose boundary conditions appropriately. But in complex geometries this is
very hard to accomplish.

In the finite-element approach, we find the integral of the differential equation on
its definition domain, and thereby express the equation in its variational form. The
domain is then divided into smaller units (finite elements) on which the solution
of the equation is approximated by a linear combination of some basis functions.
The individual elements may be positioned over the domain quite freely (Fig. 10.9),
and this liberty represents the main charm and strength of the method. Finally, the
variational integral is computed by summing the contributions from all elements;
we end up with a system of algebraic equations for the coefficients multiplying the
basis functions in the solution expansion.

Here we present the essence of FEM. For greater clarity, the basic concepts are
introduced in one space dimension, while in applications the method is overwhelm-
ingly used in two and three dimensions. Further reading can be found in the text-
books [13] and [14] which we follow closely. See also [15].

10.6.1 One Space Dimension

The finite-element method started to bloom in construction problems, so it is fair
to introduce it by a civil-engineering example: we are interested in the transverse
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Fig. 10.9 Positioning the
finite elements for the
problem of propagating
acoustic waves in the
geometry of a “snail”. Such
complex geometries are
virtually unmanageable by
classical difference methods.
Figure courtesy of M. Melenk
and S. Langdon
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Fig. 10.10 The classical boundary-value problem illustrating the one-dimensional finite-element
method: transverse deflections of a cable under non-uniform load

deflections v(x) of a support cable pulled at its ends by the force p. There is another
force (per unit length) acting in the transverse direction, f(x), and the cable is held
in equilibrium by springs with elastic modulus g (x) (Fig. 10.10).

The deflection v(x) from the horizontal is the solution of the boundary-value
problem

—p)"(x) +g()v(x) = f(x), xe[0,1], (10.64)

with boundary conditions v(0) = v(1) = 0. For simplicity we assume constant p >
0 and g > 0. We have shown in Sect. 8.6 (see (8.82)) that seeking the solution of
this problem is equivalent to determining the function v satisfying the equation

1

1
A(w,v):/ [w’pv’+qu]dx=/ wfdx = (w, f)
0 0

for any weight function w.

We divide the interval [0, 1] to N (not necessarily uniform) subintervals such that
0=x0 <x1 <x2 <---<xy—-1 <xy = 1. Each subinterval [x;_1, x;] with length
hj =x; — xj_1 is called the finite element. Over the adjacent elements [x;_1, x;]
and [x}, x;j11] we span the basis function ¢; with a peak at x; and the nodes (ze-
ros) at x;j_1 and x;11 (Fig. 10.11). We use piecewise linear basis functions here;
quadratic and cubic functions are also widely used.
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Fig. 10.11 Basis functions for the one-dimensional finite-element method. The function ¢; is
non-zero only on the interval (x;_1,x;]U [x;,xj11), and ¢; (xx) =6«

The approximate solution is expanded in terms of the basis functions ¢;:

N-1
u(x) = Z cj¢j(x). (10.65)

j=1
Since ¢ (xx) =6k, we get u(xy) = Zj ¢jd; r = cx. The coefficients ¢, are there-
fore equal to the values of u at the interior nodes. For Dirichlet boundary conditions,
u(xo) = co and u(xy) = cy, so we may include the contributions at the boundary
nodes in (10.65) if we set cg = ¢y = 0. The weight function is expanded similarly,

N—1
W)=Y djyj(x).
j=1

We stay in the Galerkin framework, where the basis functions ¢; for the solution u
are the same as the basis functions v/, for the weight function .

The coefficients ¢y in the expansion (10.65) are computed by solving the varia-
tional equation (8.83), where the sum runs over all finite elements. The equation to
be solved is

N

> (A @, u) (i, f);]=0 Vib, (10.66)

Jj=1
where u is the approximate solution (10.65), w is the weight function, and f is the
right-hand side of (10.64). The subscript j denotes the element [x;_1, x;] and runs
from 1 to N, since all finite elements from [xg, x1] through [xy_1, xx] have to be
considered. We split the expression for A; in two parts,
xj

p@’u’dx+/ gwudx. (10.67)

Xj—1

Xj
A0 = A3 @)+ A @) = [
Xij_—

Jj—1

Stiffness Matrix, Mass Matrix, and Load Vector In engineering problems the
first term of (10.67) corresponds to the internal energy of the body (due to com-
pression or expansion), and the second term to external influences (e.g. due to the
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change of potential energy under load). Over the element [x; 1, x;], the approxi-
mate solution and the weight function have the forms

ux)=cj_1¢pj—1(x)+cjp;j(x)=(cj-1,cj) <¢j1(x)) ’

¢j(x)

N ¢j—1(x)
u)(x)=dj_1¢j_1(x)+dj¢j(x):(dj—l’dj)< é)jéxj)c )’

with the derivatives

u’(x)=(c,-1,c,~>(‘}j2jj>, w’(x)=(d,-1,d,-)<‘}j2‘jﬁ),

where hj = x; — x;_1. From these expressions one finds

~ xiof 1/h2 —1/K2 cj—
S — . . !
A} (@ 0) = (dj-1.d)) U (—1/h§ 1/h§>pmdx}< 5

Jj—1

_ 9 (0 biig -
M _ , . 1 J J 1
AT = mdp [/ <¢j_f¢j ¢5> qmdx} ( ¢ )

For constant p and g, as assumed for (10.64), only elementary integrals are involved
(trivial integration in A? and integration of quadratic functions in Al}d). In this case
we get

S ) = (d: Ne. [ Ci-1 D 1 -1
Aj(U),u)—(dj—lvd])S]< ¢ ), SJ_E(—l 1) (1068)

M~ cji—1 _gqhj (2 1
Aj (U),Lt)—(dj—l,dj)Mj<ch ), M‘/—?<1 Sk (10.69)

The matrix S; is known as the element (local) stiffness matrix, and the matrix M; is
the element (local) mass matrix.

In general, the integral (w, f); in (10.66) (the scalar product of functions w and
f on the jth finite element) is computed numerically. But a good approximation can
be obtained if f on [x;_1, x;] is replaced by a piecewise linear function, f(x) ~

fi—1¢j—1(x) + fj¢;(x). Then

_ hj (2fio1+ f
)i~ di.d)g ., = J J . 10.70
(w f)j (dj— j)g] 8 6<fj—1+2fj ( )
The vector g j is the element (local) load vector, as it describes the external force or
loading upon the system.

Assembly The next step is the assembly of the element matrices into the global
stiffness matrix by summing the contributions of all elements, and adding all ele-
ment load vectors into the global load vector. To simplify, we consider a uniform
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mesh, hj = h =1/N. We sum the contributions (10.68), (10.69), and (10.70) over
all elements 1, 2, ..., N, where we consider the boundary condition cyp = dp =0 in
the terms involving the element j = 0, and ¢y = dy = 0 in those involving j = N.
We collect the coefficients c¢; and d; for the interior points of [xo, x] in the vectors

c=(c1,¢2,...,cn—1)T andd = (dy, da, ..., dy—1)T, and put the components g; in
the global load vector g = (g1, g2, ..., &nN—1 )T. The equation with the sum over the
elements,
N N
D o[AS@, wy+ AV @, w] =) (@, ),
j=I j=1

can then be written in matrix form d™[(S + M)c — g] = 0, where

2 -1 4 1
-1 2 -1 N 1 4 1
p q
S=— . " .
-1 2 -1 1
-1 2

U N
o=

are the (N — 1) x (N — 1) global stiffness and mass matrices, and

fo+4fi+ o
h fi+4fH+ f3
g=8 .

SN2 +a4fvo+ fa

is the global load vector of dimension N — 1 (in the linear approximation on each
element). This equation must hold true for any d, so the coefficients c¢; of the ex-
pansion (10.65) for j = 1,2, ..., N — 1 are obtained by solving the system

S+M)c=g.

10.6.2 Two Space Dimensions

In two dimensions the problem (10.64) is generalized to a planar region R,

ad av a av
—— P&y — )= | Py~ ) Falx. v =f(x.y), (x,y) €R,
ox ax dy dy

with the boundary condition v(x, y) = a(x, y) for (x,y) € dR. (A problem with
a non-homogeneous condition « # 0 can be turned into the problem with o = 0
by shifting © = v — «.) The variational formulation of the problem is analogous to
the one-dimensional case; things start to become complicated when we attempt to
divide (partition) the region R to finite elements.
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Fig. 10.12 Triangulation for
the finite-element method in
the geometry of a square with
a cut-out circle. Top left: a
coarse mesh of triangular
elements with the
enumeration of nodes and
elements. Bottom right: in a
part of the region we are
allowed to use other shapes
(e.g. squares) or refine the
mesh in physically more
interesting regions

In one dimension the finite elements are intervals; in a planar region the role
of the elements is taken by various geometric shapes. Most frequently one uses
(not necessarily equilateral or isosceles) triangles, rarely quadrilaterals (Fig. 10.12).
The partitioning of the region is known as triangulation (or quadrangulation). For
complex geometries (see Fig. 10.9) it almost amounts to art. Effective triangulation
is accomplished by dedicated commercial programs (see e.g. [16]). Among the most
well known is the Delaunay triangulation [17, 18]. A good triangulation guarantees
that none of the interior angles in the triangles is too small (it maximizes the smallest
used angles), thereby ensuring numerical stability.

On the chosen triangulation the corresponding basis functions are defined. Here
we restrict the discussion to piecewise linear functions of x and y. The basis function
on the nodes of the triangle x; = (x;, yj)T, Xj = (Xj41, yj+1)T, and x40 =
(xj42, yj+2)T, with an apex at x ; (Fig. 10.13(a)) has the form

-1

Xj yj 1 x y
pj(x,y)=|det| 1 xjy1 Yj4i ~det| 1 xj41 yj+1 |- (10.71)
I Xxjt2 Y+ 1 Xxji2 yj42

The function ¢; is non-zero only over the triangle defined by the nodes x;, x 1,
and x j 4. It also holds that

@i Xk, yi) =0 k-

Note that (10.71) expresses only the intersection of the planes defining the three side
surfaces of the pyramid. For each pair of x and y one needs to check whether they
lie inside the triangle defined by the three nodes.

Assembly When assembling the elements of local stiffness and mass matrices in
the corresponding global matrices, one must distinguish between the local indices
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Fig. 10.13 Three-node element functions for the finite-element method on the plane: (a) the basic
function above the triangular element with the value 1 at the node x1 and values O at the side nodes
x7 and x3; (b) the basis function above six elements; (¢) the neighborhood of the node x; as used
in Problem 10.9.7

of nodes m, n € {1, 2, 3}, and the global indices of nodes j, k € {1,2,..., N} and
elements f € {1,2, ..., N7}. Global indices label the whole triangulation with N/
nodes and N7 elements (triangles). In the variational requirement we sum over all
triangles,

Y AY@ =) (@, HY,

t=1 t=1

where ¢ is the label of the triangle T;. The surface integrals
A@anuyzf[mvwﬂﬁvu+qwﬂdum, ﬁlfﬁ”:/.ﬁfMd%
T; T:

are computed on each triangle 7; separately. This is relatively easily done in the
Galerkin form of the method with piecewise linear basis functions, where ¢; = ¥/,
as we need only the expressions for the functions ¢; (10.71) and their derivatives

1 . — v
V¢j(x y) 2|T| (y]+1 y]+2>’

Xj+2 = Xj+1
where |T| = %|(x2 —x1)(y3 — y1) — (2 — ¥1)(x3 — x1)] is the surface area of the

triangle. The local contributions of triplets of nodes to the stiffness matrix and the
corresponding components of the local load vector are then

Al (@, u) = /T [P(Véu)TVu + qdmen] dx dy,
(W m—/¢fmw

Example How local matrices and vectors are assembled in the global matrix and
global vector is best explained by an example. To make the discussion easier, we set
p=1and g =0 (we are solving the Poisson equation —V?v = f). In this case the
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surface integrals over the triangles 7; are simple,

1
A%L = —(ym+l — Ym+2s Xm+2 — xm+1) (

Yn+1 — Yn+42
47| ’

Xn4+2 — Xn+1

~ 1 X —Xm X —x
) ~ m+1 m m+2 m
w, ~ — det XT, )
W Sdm 6 (ym+l —Ym  Ym+2 — }7m> fomoym)

where (xT, yr) are the coordinates of the center of mass of the triangle 7;.

As an illustration of the method, the top left portion of Fig. 10.12 shows a coarse
triangulation of a square region with a cut-out circle. This problem (adopted from
[14]) is still manageable by classical difference methods, but we use it here to serve
as a typical example. We arrange the nodes in the matrix

1 2 3 4 5 . 11 12 13 14 15\"
N=]0 1 159 2 3 .- 0 0 1 1 2
0 0 o1 141 --- 2 1 1 2 2

that includes the triplets {label of node, x, y}: here we specify the actual locations
of the nodes in the planar region. The matrix

1 2 3 4 5 ... 12 13 14 15 16\"
T o0 110 10 9 .- 7 3 4 5 5
|1 12 11 12 10 --- 8 4 5 7 6
m 11 12 13 13 --- 14 14 14 14 7

contains the quadruplets {label of element, label of node 1, label 2, label 3} relating
the elements to the global indices of their nodes. The connection between the space
of physical coordinates and the space of elements must be provided in our own code
by some mapping between the sets A" and 7. It is recommendable that the main
loop in the code runs over the triangles t = 1,2, ..., N, not over the nodes, which
would also be possible. Namely, it turns out that fewer surface integrals (evaluated
numerically in general) need to be computed by using the element loop than by
looping over the nodes [14]. The components of the global stiffness matrix S and
the global load vector g are obtained by summing

loopover t=1,2,...,Nt
STwm) Tam += Al (m,n=1,2,3)

eTum +=(0, ) (m=1,23)
end loop

By solving S¢ = g (as in the one-dimensional case) we finally obtain the vector ¢

containing the expansion coefficients of the solution, u(x, y) =" jcjoj(x, ¥).
Try not to confuse the labellings of the nodes and the elements, since in gen-

eral the number of nodes N/ is different from the number of elements N7. While
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the program loops over the elements ¢, the values are inserted in the global ma-
trix, and the corresponding load vector according to the labeling of nodes. Compare
Fig. 10.13(c) to Fig. 10.17: around the node x; (in global enumeration) six triangles
are arranged, and they form the support for the basis function shown in Fig. 10.13(b).
Check your understanding in Problem 10.9.7!

We have merely traced the very first steps of FEM. A genuine expert use of the
method only just starts here: non-uniform planar or spatial meshes are devised; basis
functions are realized as splines of different degrees so that specific requirements at
the boundaries between the elements are met; the mesh can be made denser during
the computation if an increase in local precision is called for; discontinuities may
be incorporated; non-stationary problems can be implemented; a road opens towards
non-linear problems with a multitude of initial and boundary conditions. The finite-
element method is already a part of modern numerical packages like MATLAB: nice
pedagogical examples that can serve as a good vantage point for further study are
given in [19, 20]. A myriad of commercial program packages is available for a more
demanding use of the finite-element method [21]. For an excitingly propulsive free
version, see [22].

10.7 Mimetic Discretizations x

A powerful tool for solving PDE in complex geometries are the mimetic (or com-
patible) discretizations [23] that attempt to mimic the properties of the physical
problem as closely as possible. A nice example is the diffusion in strongly hetero-
geneous and non-isotropic media described by the equation v; =V - D(v)Vv + Q.
The space is divided in “logically rectangular” convex cells onto which scalar and
vector fields are attached (Fig. 10.14 (left)).

But the key step is the discretization of differential operators, like the diffusion
operator V - D(v)V for the problem mentioned above [27, 28]. The discretization
should, at least to some order, respect the symmetry and conservative properties
of the underlying equation, for example, the conservation of mass, momentum, or
energy (in studies of fluid flows) or Maxwell’s equations (in electro-magnetic prob-
lems). Ultimately, the problems are translated to systems of algebraic equations and
solved by preconditioned matrix relaxation methods.

A detailed presentation is beyond the scope of this book, but we let them lurk at
the horizon due to their flexibility and development in the recent years. An intro-
duction is given in [23] and the mathematical background in [29].

10.8 Multi-Grid and Mesh-Free Methods %

Two further unique approaches to solving PDE in complex geometries should be
mentioned. In the multi-grid approach the differential problem is discretized on
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