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The finite element method for partial
differential equations

13.1 Introduction

When we consider a partial differential equation, such as the ubiquitous Laplace
equation

V24 (r) =0, (13.1)

together with some boundary condition(s), the obvious way of solving it that comes
to mind is to discretise this equation on a regular grid, hoping that this grid can
match the boundary in some way. Then we solve the discretised problem using,
for example, iterative methods such as the Gauss—Seidel or conjugate gradients
method (see Appendix A7.2). For many problems, this approach is adequate, but
if the problem is difficult in the sense that it has a lot of structure on small scales
in some region of the domain, or if the boundary has a complicated shape which
is difficult to match with a regular grid, it might be useful to apply methods that
allow for flexibility of the grid on which the solution is formulated. In this chapter
we discuss such a method, the finite element method.

One way of looking at the finite element method (FEM) is by realising that many
partial differential equations can be viewed as solution methods for variational
problems. In the case of the Laplace equation with zero boundary condition, for
example, finding the stationary solution of the functional

f [Vo(r)]* d/r, (13.2)
D

where the integral is over the d-dimensional domain D and where we confine
ourselves to functions ¢ (r) which vanish on the domain boundary, yields the same
solution as that of the Laplace equation — in fact, the Laplace equation is the Euler
equation for this functional (see the next section).
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424 The finite element method for partial differential equations

The integral can be discretised by dividing up the domain D into elements of —in
principle — arbitrary shape and size, and assuming a particular form of the solution
within each element, a linear function for example, together with continuity con-
ditions on the element boundaries. It turns out that finding the solution boils down
to solving a sparse matrix problem, which can be treated by conjugate gradient
methods, see (see Appendix A7.2).

In this chapter we discuss the finite element method, error estimation, and prin-
ciples of local grid refinement. This will be done for two different problems: the
Poisson/Laplace equation, and the equations for elastic deformation of a solid. Both
problems will be considered in two dimensions only. The aim is to explain the ideas
behind the finite element methods and adaptive refinement without going into too
much detail. For a more rigorous and complete treatment, the reader is referred to
the specialised literature [1-5].

Some special topics will be covered in the remaining sections: local adaptive grid
refinement, dynamics, and, finally, the coupling of two descriptions, finite element
and molecular dynamics, in order to describe phenomena at very different length
scales occurring in one system.

Most of the sections describe implementation of FEM for standard problems.
The reader is invited to try the implementation by him- or herself.

13.2 The Poisson equation

As mentioned in the previous section, the Laplace equation can easily be formulated
in a variational way. The same holds for the Poisson equation:

V2 (r) = f(r), (13.3)

with appropriate boundary conditions. We assume Dirichlet boundary conditions
on the edge of the domain, which we take as a simple square of size L x L. The
functional whose stationary solution satisfies this equation is

Jer)] = /D{[V¢(r)]2 +f()$r)} d’r, (13.4)

as is easily verified using Green’s first identity [6] together with the fact that ¢
vanishes on the boundary. From now on, we shall use d€2 to denote a volume
element occurring in integrals.

We now divide up the square into triangular elements, and assume that the solution
¢ (r) is linear within each element:

¢ (x,y) = a; + bix + c;y (13.5)

within element i. Now consider a grid point. This will in general be a vertex of
more than one triangle. Naturally, we want to assign a single value of the solution
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Figure 13.1. Two adjacent triangles on a square (ground plane) with a linear func-
tion ¢ (r) shown as the height (vertical) coordinate on both triangles. As ¢ is linear
for each triangle, the requirement that the values of the two triangles are the same
at their two shared vertices ensures continuity along their edges.

to that point, so we require the solution within each triangle sharing the same vertex
to have the same value at that vertex. Linearity of the solution within the triangles
then makes the solution continuous over each triangle edge (Figure 13.1). We see
that for each triangle, the solution is characterised by three constants, a;, b; and c;.
They can be fixed by the values of the solution at the three vertices of the triangle.
It is also possible to use rectangles as elements. In that case, we must allow for
one more degree of freedom of the solution (as there are now four vertices), and
the form may then be

¢ (x,y) = a; + bix + ciy + dixy. (13.6)
It is also possible to use quadratic functions on the triangles:
¢ (x,y) = a; + bix + c;y + dixy + eix® + fiy?, (13.7)

requiring six conditions. In that case, we use the midpoints of the edges of the tri-
angles as additional points where the solution must have a particular value. We
shall restrict ourselves in this book to linear elements. In three dimensions, the
linear solution requires four parameters to be fixed, and this can be done by using
tetrahedra as elements (a tetrahedron has four vertices). The triangle and the tetra-
hedron are the elements with nonzero volume which are bounded by the smallest
possible number of sides in two and three dimensions respectively. Such elements
are called simplices. In one dimension, an element with this property is the line
segment.

Now that we have a discrete representation of our solution by considering just its
values on the vertices of the grid, we must find the expression for the integral within
the approximations made (i.e. linear behaviour of the solution within the elements).
To do this we digress a bit to introduce natural coordinates. For a triangle these are
linear coordinates which have a value 1 at one of the vertices and zero at the two
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3

Figure 13.2. The areas A,, Ap and A, for any point P within the triangle. The A;
are used to define the natural coordinates &; of the point P. A is the total surface
area.

others. Any point P within the triangle can be defined by specifying any two out of
three natural coordinates, &,, &, or &.. These are defined by

=21 i=abec, (13.8)

where A;, A are the surface areas shown in Figure 13.2. The natural coordinates
satisfy the requirement

§a +&p+6 =1 (13.9)

The x- and y-coordinates of a point can be obtained from the natural coordinates
by the linear transformation

1 1 1 1\ /(&
x|l =1x: x» =x & (13.10)
y Ya Yb Ye) \c

where (x,,y,) are the Cartesian coordinates of vertex a etc.
The reverse transformation

Sa 1 XbYe — XcYb  Ybe  Xcb 1
& | = oA | Xeyo —XpYe  Yea Xac | | X (13.11)
& XaYb — XpYa Yab Xba) \Y

with 2A = det(A) = XpaYea — XcaYpa and Xgp = Xxp — X4 etc., translates the x,y

coordinates into natural coordinates. All these relations can easily be checked.
Having natural coordinates, we can construct a piecewise linear approximation to

the solution from the values of the solution at the vertices of the triangles. Calling
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da, ¢p and ¢, these values at the corresponding vertices, the solution inside the
triangle is given by

D) = Gpaka + Pobp + Peke (13.12)

In order to evaluate integrals over the triangular element, we use the following

formula: o
kelom 1 m!
/Agagbgc dQ_ZA(2+k+l+m)! (13.13)
for non-negative integers &, [ and m, and for a, b and ¢ assuming values 1, 2 and 3.
Remember, d2 is the volume element.
We now have all the ingredients for solving the Laplace equation using triangular
finite elements. First, note that the integral (13.4) now becomes a quadratic expres-
sion in the values ¢; at the grid points. This quadratic expression can be written in

the form

Jigl=—¢'Kp —r'¢ (13.14)

(we work out the specific form of the expressions below). Here, ¢ is the vector
whose elements are the values of the solutions at the grid points, K is a symmetric
matrix, and r is a vector. Minimising this expression leads to the matrix equation

K¢ =r. (13.15)

The matrix—vector product on the left hand side can be evaluated as a sum over all
triangles. Within a triangle, we deal with the values on its vertices.
To be more specific, let us calculate

/ (V)2 dQ. (13.16)
elem

Using (13.11) we have
1
Vé, = ﬂ(ybc,xcb) (13.17)

and similar expressions for the other two natural coordinates. From these we have,
with the parametrisation (13.12),

~ 1
Vo = ﬂ[‘pa()%c’xcb) + &b YVeas Xac) + P Yabs Xba)]- (13.18)

Note that on the left and right hand side, we have two-dimensional vectors, which
are given in row form on the right hand side. Also note that the components of the
vector are constant over the triangle, which is natural as the solution is assumed to
be linear within the triangle. The integral is the norm of this constant vector squared
times the surface area of the triangle. Obviously this yields a quadratic expression in
da, ®p and ¢, of a form similar to (13.14), but now formulated for a single triangle.
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This equation is defined by a matrix k which is called the local stiffness matrix for
the triangle under consideration. Introducing the vectors

Ybc
b=y« (13.19)

Yab

and
Xeb
c= | x4 (13.20)

Xbe
we see, after some calculation, that the stiffness matrix k can be evaluated as

k =bb' + ccT, (13.21)
which leads to the result
Vi, X% YbeYea +XcbXac  YbeYab + XebXba
k] = ﬂ YbeYea + XcbXac yga + xgc YCaygb + xgcxba . (13.22)
YbcYab + XcbXba  YcaYab + XacXba Yab T Xba

We not only need the matrix representing the Laplacian operator, but we must also
evaluate the integral containing the source term f(r) in Eq. (13.4). The continuous
function f(r) is approximated by a piecewise linear function f on the triangles —
just like the solution ¢ (r). For a particular triangle with vertices a, b, and ¢, we have

F(O) = fuba + fobp + foke. (13.23)

We must multiply this by the linear approximation for ¢, Eq. (13.12), and then
integrate over the element, using (13.13). The result must then be differentiated
with respect to ¢4, ¢p, ¢, Which results in a vector element

Ja Jo Je
rg =2A (ﬁ + 2 + ﬂ) , (13.24)
and similar for 7, and r.

The matrix—vector multiplication can be carried out as a loop over all triangular
elements where for each element the stiffness matrix is applied to the three ver-
tices of that triangle. Note that the stiffness matrix should always act on the old
vector containing the field values ¢, and that the result should be added to the
new vector (which initially is set to zero; see the next section). If we have a matrix—
vector multiplication and a right hand side of the form (13.15), we can apply the
conjugate gradients method to solve the matrix equation.

We have overlooked one aspect of the problem: if a triangle contains vertices on
the boundary where the value of the solution is given (Dirichlet boundary condition),
the corresponding values of ¢ (r) are known and therefore not included in the vector.
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In that case we apply the stiffness matrix only to those points which are in the interior
of the system. That is, we update only the interior points — the values at the boundary
points remain unchanged.

13.2.1 Construction of a finite element program

The program should contain an array in which the equilibrium positions of the
vertices are stored. Furthermore, we need a vector containing the displacements of
each vertex. Note that locations and displacements are both two-dimensional in our
case. Furthermore there is an array containing the relevant stiffness matrices for the
triangles. For each triangle, we must know the indices of its three vertices. From
this we can calculate

o The stiffness matrix for the triangle;
o The force vector of the triangle, which is the right hand side of the matrix
equation to be solved.

The heart of the program is the multiplication of the field vector by the stiffness
matrixes of the triangle. This can be done as follows.

Set the new global field vector to zero;
FOR each triangle DO
Store the three old values of the field at the vertices
in a local 3-vector;
Multiply this vector by the stiffness matrix;
Add the result to the appropriate entries of the new global
field vector;
END FOR

You should now be able to write such a program. If you study the the problem of
a point charge (delta function) on a 40 x 40 square grid, which is divided up into
3200 rectangular triangles with two 45° angles, you need 118 conjugate gradient
iterations to achieve convergence of the residue (the L, norm of the vector [K][¢] —
[r]) within 10719, Obviously, this is the error in the solution of the matrix equation.
The numerical error introduced by the discretisation of the grid may be (and will
be) substantially larger.

13.3 Linear elasticity
13.3.1 The basic equations of linear elasticity

For many materials, deformations due to applied forces can to a good approximation
be calculated using the equations of linear elasticity. These equations are valid in
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Figure 13.3. Two types of deformation, compression (left) and shear (right).

particular when the deformation is relatively small so that the total energy of the

deformed system can be well approximated by a second order Taylor expansion.
There are two types of deformation. The first is compression or expansion of

the system, and the second is shear. These effects are shown in Figure 13.3. We

restrict ourselves to homogeneous isotropic systems in two dimensions. Then the
resistance of a material to the two types of deformation is characterised in both

cases by an elastic constant — in the literature either the Lamé constants A and u
are used, or the Young modulus E and Poisson ratio v. They are related by

A2
— M (13.25a)
At
> (13.25b)
V= —_—7""—7. .
2+ )

To formulate the equations of deformation, consider the displacement field u(r).
This vector field is defined as the displacement of the point r as a result of external
forces acting on the system. These forces may either be acting throughout the
system (gravity is an example) or on its boundary, like pushing with a finger on
the solid object. In the equilibrium situation, the forces balance each other inside
the material. So, if we identify a small line (a planar facet in three dimensions) with

a certain orientation somewhere inside the object, the forces acting on both sides of
this line should cancel each other. These forces vary with the orientation of the line
or facet, as can be seen by realising that in an isotropic medium and in the absence
of external forces, the force is always normal to the line (it is due to the internal,
isotropic pressure). Another way to see this is by considering gravity. This acts on
a horizontal facet from above but not on a vertical facet. Therefore it is useful to
define the stress tensor oj; which gives the jth component of the force acting on a

small facet with a normal along the ith Cartesian axis.



13.3 Linear elasticity 431

The stress plus the body forces results in the displacement. It is important that
the actual value of the displacement matters less than its derivative: if we displace
two points connected by a spring over a certain distance, the forces acting between
the two points do not change. What matters is the difference in displacement of
neighbouring points. Information concerning this is contained in the strain g;;. It is
defined as

= % 13.26)
&ij = o . (13.
For an isotropic, homogeneous material in two dimensions, only three components
of stress and strain are important:

Oy and &y (13.27a)
oyy and &y} (13.27b)
oxy and 2sy,. (13.27¢)

Stress and strain are related by Hooke’s law:
o = Ceg, (13.28)

where o is the vector (0yy, 0yy, oxy)T and similarly for €. C is the elastic matrix:

1 v 0
cC=|v 1 0 . (13.29)
0 0 J(1-v)

The body is at rest in a state where all forces are in balance. The force balance
equation reads

Do +f=0 (13.30)
with
B}
o 0
g 2
D= 3y (13.31)
a0
dy  ox

This matrix can also be used to relate € and u:
& = Du. (13.32)

There are two types of boundary conditions: parts of the boundary may be free
to move in space, and other parts may be fixed. You may think of a beam attached
to a wall at one end. In the example which we will work out below, we only
include gravity as a (constant) force acting on each volume element of the system.
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Just as in the case of the Laplace equation, we must find an integral formulation
of the problem, and approximate the various relevant functions by some special
form on the elements. As before, we will choose piecewise linear functions on the
elements. Note that in this case we approximate each of the two components of the
displacement field by these functions.

13.3.2 Finite element formulation

The finite element formulation can be derived from the continuum equations if we
can formulate the latter as a variational problem for a functional expression which
is an integral formulation of the problem.

To find this formulation in terms of integrals, we introduce the so-called ‘weak
formulation’, for the force balance equation, which has the form:

/ su)T (Do +£) dQ2 = 0. (13.33)
Q

Here, du is an arbitrary displacement field satisfying the appropriate boundary
conditions. Using (13.32) this integral equation is cast into the form

/ (5¢) o dQ2 = — / (Su)Tf d2 (13.34)
Q Q

We then can divide up the space 2 into N elements (triangles for two dimensions)

and write
N N
> / (88) 0, dQe=—) / (5up) 'L, dS,. (13.35)
e=1 L2 e=1 S

From this we can derive the form of the stiffness matrix for the elastic problem.
First note that the variables of the problem are the deformations v, on the vertices
n. This means that for each triangle we have six variables (two values at each of the
three vertices). Therefore, the stiffness matrix is 6 x 6. The deformations do not
enter as such into the problem but only through the strain tensor. We have

a
F™ 0
Exx (;C ad u
E, = Eyy = Dlle = 5 (ux> . (1336)
265y 3 Y
dy ox

This tensor, however, is linearly related to the v;. We write the displacement
field as

u= Vasa + Vb‘é;:b + Vcéc- (13-37)
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The &; depend on x and y — the relation is given in Eq. (13.11). From this, and from
(13.17), we find

Vax
Vay
w=yy 0 ye=ya 0 ya—wp O »

g, = 0 Xe — Xp 0 Xq — Xp 0 Xp — Xg va

Xe=Xp Yb—Ye Xa—Xb Ye—Ya Xb—Xa Ya—Vb vby

cxX

Vey
(13.38)

We call the 3 x 6 matrix on the right hand side B. Using the relation

o = Ce, (13.39)

we can rewrite the element integral of the left hand side of Eq. (13.35) as
/ (8v)"BTCBv dQ,, (13.40)

where v is a six-dimensional vector, B is a 3 x 6 matrix and C a 3 x 3 matrix.
Note that there is no dependence on the coordinates x and y in this expression.
This can be traced back to the fact that we can express the integrand in terms of
the strain, which contains derivatives of the deformation u which in turn is a linear
function within the element. The integral is obtained by multiplying the constant
integrand by the surface area A of the integrand. The stiffness matrix Kk is therefore
given by
k = ABTCB. (13.41)

This is a 6 x 6 matrix which connects the six-dimensional vectors v.

The right hand side of Eq. (13.35) also involves an integral expression. This
contains the external force. Taking this to be gravity, it is constant. We must evaluate
the integral

fe . o [(SV)a‘i:a + (8V)b§b + (Sv)céc] dQe- (13-42)
This can be written in the form
f. - Gv, (13.43)
where G is the 2 x 6 matrix:
A/l 01 01 O
5(0 1010 1)' (13.44)

‘We have now reworked (13.35) to the form

SVIKv = v G, (13.45)
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Figure 13.4. Deformation of a beam attached to a vertical wall, calculated with
the finite element method. The beam is supported on half of its base.

where v now represents the vector of all displacements (that is, for the whole grid),
K is the full stiffness matrix, which can be evaluated as a careful sum over the
stiffness matrices for all triangles in the same spirit as described for the Laplace
equation in Section 13.2.1, and the right hand side is a vector defined on the full
grid. The dimension of the matrix problemis 2NV, where N is the number of vertices.
If points are subject to Dirichlet boundary conditions, they are excluded from the
vectors and matrices, so that for actual problems the dimension is less than 2N. The
matrix equation found must hold for all §v, which can only be true when

Kv = Gf (13.46)

and this can be solved for using the conjugate gradients method. In Figure 13.4, the
result of a deformation calculation is shown for a beam with the left end attached
to a wall.

13.4 Error estimators

Like every numerical method, the finite element method is subject to errors of sev-
eral kinds. Apart from modelling errors and errors due to finite arithmetic precision
in the processor, the discretisation errors are important, and we will focus on these.
Obviously the discretisation error can be made small by reducing the grid constant
homogeneously over the lattice, but this can only be done at the cost of increasing
the computer time needed to arrive at a stable solution. It might be that the error is
due to only a small part of the system under consideration, and reducing the mesh
size in those regions which are already treated accurately with a coarse mesh is
unnecessary and expensive overkill.

It is therefore very useful to have available a local estimator of the error which
tells us for a particular region or element in space what its contribution to the
overall error is. In that case, we can refine the mesh only in those regions where it is
useful. In this section, we first address the problem of formulating such a local error
estimator and then describe a particular refinement strategy for triangular meshes.

One type of local error estimator is based on the notion that, unlike the displace-
ment field, the stress usually is not continuous over the element boundaries. If a
number of triangles meet at a particular mesh point, they will all have slightly dif-
ferent values of their stress components (recall that the stress is defined in terms of
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first derivatives of the displacement fields). A more accurate solution would lead
to continuous stresses and this can be achieved by some suitable averaging of the
stress components at the mesh points. To be specific, the nodal stress at a mesh
point p would be given by

Z WelemOelem (13.47)

elems

0
P Zelems Welem
where the stresses on the right hand side (in the sum) are the result of the finite
element calculation; the weights wele, may be taken equal or related to the surface
area of the elements sharing the vertex p. The error is then the difference between the
‘old’ stresses resulting from the calculation and the improved values based on the
recipe above. We shall refer to the ‘old’ stress, resulting from the FEM calculation,
as the FEM stress.

The question arises how the weights welem can be chosen optimally. One answer
to this question is provided by the projection method [7—10]. In this method we
seek a continuous, piecewise linear stress field, which deviates to a minimal extent
from the FEM stress. The deviation can be defined as the L,-norm of the difference
between the FEM stress and the continuous stress oc which is a piecewise linear
FEM-type expansion, based on the values o :

= fQ (oc — orem) " (0c — oFEM) dQ. (13.48)

We write the continuous stress within a particular triangle (a, b, ¢), as usual, in the
form

oc = 0484 + opép + 0k, (13.49)
where o, etc. are the values of the stresses at the three vertices (as the stress is
continuous, it must be single-valued at the mesh points). The optimal approximation

of the actual stress is defined by those values of oc at the vertices for which the
deviation A is minimal. This directly leads to the condition

IA doc\ "
daloc] _ 2/ (ﬂ> (0c — orem) A = 0. (13.50)
aO'p Q aO'p

As the continuous stress field is a linear function of the values at the mesh points,
we immediately obtain

> /Q €pEq0q dS2 — /Q €,0rEM,p A2 = 0. (13.51)

This expression needs some explanation. For the point p, the points ¢ run over p
and all its neighbours. The functions &, and &, are defined within the same triangle;
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OFEM,p 1 the (constant) stress in that triangle. Therefore we can evaluate the product
of the matrix

/ §p&q d2 (13.52)
Q

with the vector o, again as a sum over all triangular elements.

We can evaluate the resulting matrix equation in exactly the same way as the full
matrix equation which we have solved in order to find the displacement. However,
the present problem is usually solved within about 10% of the time needed for the
full elasticity problem.

It is interesting to calculate the local error. For the problem we are focusing on,
a beam attached to a wall, the corners where the beam is attached to the wall are
the points where the error is maximal.

There exist other methods for calculating the local error. Superconvergent patch
recovery (SPR) is based on the notion that the error oscillates throughout the ele-
ments — hence, there exist points where the error vanishes. Even if those points
cannot be found, some points can be identified where the error is an order of mag-
nitude better than average. These points usually are somewhere near the centre of
the elements — the vertices are the worst possible points. Using the values at the
superconvergent points, a much more accurate stress field can be constructed, and
the difference between this field and the FEM field is used as the local error. For
details see Refs. [8,11,12].

13.5 Local refinement

The local error can be used to decide which elements should be refined. Local
refinement of triangles is a subtle problem mainly for two reasons. The first is that
when a triangle is refined by dividing it up into two triangles as in Figure 13.5(a),
the resulting triangles might have an awkward shape. The point is that narrow, long
triangles are not suitable for FEM calculations because they give rise to large errors.
Therefore, it is good practice to construct the new triangles by bisecting the longest
edge of a triangle.

The second problem is that if we perform such a bisection, another triangle,
sharing the same long edge, should be partitioned as well, as it would be impossible
to have continuity of the solution otherwise (see Fig. 13.5(b)). Rivara therefore
devised the following refinement procedure [13]:

o If a triangle needs refinement, we bisect its longest edge;

o If this edge is also the largest edge of the neighbouring triangle, this triangle
should also be divided via bisection of the same edge;

« If the edge is not the longest edge of the neighbouring triangle, this triangle
should be refined by bisecting its longest edge.
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(a) (b)

Figure 13.5. Refinement of triangular grid. (a) Two ways of partitioning a triangle —
partitioning according to the dashed line is undesired. (b) It is not allowed to
partition a triangle by bisecting an edge without partitioning its neighbour along
the same edge.

This procedure is recursive in nature. It boils down to the following algorithm,
starting from the triangle T which is to be refined:

ROUTINE RefineTriangle(T)
Find the longest edge E of T;
IF E is not the longest edge of the neighbouring triangle T THEN
RefineTriangle(T');
END IF;
Create a new mesh point by bisection of E;
END ROUTINE RefineTriangle.

Note that the routine does not generate triangles, but vertices. It is important to
store the information concerning which vertices are neighbours. The new triangles
can then be constructed from these data. In order to do this, we must make sure that,
for each vertex, we have an array containing the neighbours of that vertex, ordered
anticlockwise. If the vertex is a boundary point, the list starts with the leftmost
neighbour and proceeds until the rightmost neighbour is reached. For vertices in
the bulk, there is obviously no natural ‘first’ and ‘last’ neighbour: the first point is
the right neighbour of the last point, and obviously the last point is then the left
neighbour of the first.

For each vertex, all neighbouring triangles can be found by taking the vertex
itself together with two subsequent neighbours. In this way, however, a triangle in
the bulk would be counted three times. A way to define the triangle uniquely is by
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5:2,1,3,8,6,4,7
6:8,5,4

3 8

Figure 13.6. The data structure proposed by Rivara [13]. The points of the mesh
are numbered in some way, and for each point, the neighbours are kept in a list.
The list for a central point (number 5) is cyclic: the first point is connected to the
last one, whereas a boundary point has a noncyclic neighbour list. Each triangle is
counted only from the vertex with the lowest index possible.

requiring that the vertex we start from has a lower index than the two neighbours
with which it forms the triangle.

The data structure is clarified in Figure 13.6.

Once we have a list of vertices with a list of neighbours for each vertex according
to the rules specified above, the triangles can be generated straightforwardly:

FOR each vertex DO
FOR each triangle spanned by the vertex
and two of its subsequent neighbours DO
IF the central vertex has a lower index than the two neighbours THEN
Add triangle to the list of triangles;
END IF;
END FOR;
END FOR

The line ‘FOR each triangle spanned by the vertex and two of its subsequent
neighbours DO’ is different for edge points, where we only look at subsequent
neighbour pairs between the first and the last neighbouring vertex, than for interior
points, where we also include the pair formed by the first and the last neighbouring
vertex.
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Figure 13.7. Deformed elastic beam which is attached to a vertical wall and sup-
ported over half its length. The difference from Figure 13.4, which shows the same
beam, is the local refinement of the elements.

When the refinement procedure is carried out, we simply add the new vertices
to the list of vertices. After the mesh has been refined, we construct the new list of
triangles using the above algorithm.

The question is what the best measure of the error would be. We could take the
Ly norm of the difference between o and opgm. There are many other possibilities,
and a very common one is the ‘energy norm’, defined as

€E = / (0 — orem) C(o — oppm) & (13.53)
Q

Figure 13.7 shows the deformation of a beam which is attached to a wall and to a
horizontal line over part of its lower edge. As is to be expected, the mesh is strongly
refined near the sharp edge where the horizontal fixed line ends.

The use of adaptive refinement may give tremendous acceleration when a highly
accurate solution is wanted for a heterogeneous problem.

13.6 Dynamical finite element method

In the previous sections we have assumed that dissipative forces remove all the
kinetic energy so that an elastic object subject to forces will end up in a shape in
which its potential energy is minimal. We may, however, also consider nondissipat-
ive dynamics in the elastic limit. We treat this case by formulating the total energy
as a sum of the elastic energy, the work done by external forces and the kinetic
energy:

H= l/ eT(r)Ce(r) d3r+/ £(r) - u(r) d3r+1/ p(r)u’(r) d*r. (13.54)
2 Jq Q 2 Jq

We can perform the integrals as above, taking the mass density constant over a
triangle, leading to

Myv = —Kv + Gf. (13.55)
The matrix M is the mass matrix. Putting the expressions for the natural coordinates

in the integral containing the mass density, we find for the mass matrix m of a single
triangle

PA
Mpg = E(l + 8pg). (13.56)
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Here p is the (average) mass density on the triangle. The global mass matrix is
constructed from the local mass matrices in the same way in which the global
stiffness matrix was found.

Adding dynamics to the program is a relatively small addition to the static pro-
gram which was described in the previous sections. The solution of the equations
of motion, however, is a bit more involved. This equation is not diagonal in the
mass as is the case in the many-body dynamics of molecular dynamics simulations.
Formulating the discrete solution using the midpoint rule

M[u(t + 1) + u(t — h) — 2u(®)] = h*(—Kv + Gf) (13.57)

shows that, knowing the solution u at the times 7 and r — &, we can predict its value at
t+hby solving an implicit equation. We can again use the conjugate gradient method
for this purpose. This algorithm should be applied at each time step. As the solution
to be found is close to the solution we had at the last time step, the conjugate gradient
method will converge in general much faster than for a stationary state problem for
which the initial solution is still far away from the final one (in the first case we
speak of a transient problem). The difference between the two problems is the same
as that between solving the diffusion equation (transient) and the Poisson/Laplace
equation. It is also possible to add friction to the dynamics. A damping matrix is
then introduced which has a shape similar to the mass matrix, but this is multiplied
by the first time derivative of u rather than the second derivative. Obviously, the
eigenvalues of the damping matrix must be negative (otherwise, there would be no
damping).

A dynamical simulation shows an object wobbling as a result of external forces
or of being released from a nonequilibrium state. In general, we see elastic waves
propagating through the material.

13.7 Concurrent coupling of length scales: FEM and MD

If we exert strong forces on an object, there will be deviations from elastic behaviour
due to the fact that a second order approximation of the potential energy in terms
of the strain breaks down. New phenomena may then occur: in the first place, we
see a change in speed of the elastic waves; moreover they start interacting, even
in the bulk." The most spectacular deviation from elastic behaviour occurs when
we break the material. The elastic description fails completely in that case. In fact,
when an object is broken or cut, the bonds between rows of atom pairs are broken
and an accurate description should therefore include atomic details, preferably at
the quantum level. The problem is that, although such a description is adequate for

! Elastic waves can also interact at the boundary of an object by coupling between the transverse and
longitudinal components.



13.7 Concurrent coupling of length scales: FEM and MD 441

processes taking place near the fissure and far away from it, it becomes unfeasible
when we want to include substantially large (parts of) objects. You may ask why we
would bother about the processes far from a fissure, since the deviations of the atoms
from their equilibrium positions are very small there. However, the energy released
by breaking a bond will generate elastic waves into the bulk, which, when the bulk is
small, will bounce back at the boundary and reinject energy to the fissure region. It
is possible to couple an atomic description to an elastic medium which then carries
the energy sufficiently far away . This is done by concurrent coupling of length
scales [14, 15]. In this technique a quantum mechanical tight-binding description
is applied to the region where the most essential physics is taking place: in our
example this is the breaking of atomic bonds. The surrounding region is described
by classical MD. Farther away, this description is then replaced by an elastic one,
which is treated by finite elements. We shall not describe the full problem here —
for this we refer to the papers by Broughton, Rudd and others [14, 15]. We shall,
however, show that elastic FEM can be coupled to MD in a sensible way.

From the chapter on MD, it is clear that we would like to have dynamics described
by a Hamiltonian. The dynamic FEM method has this property, and this is also the
case for the MD method. We must ensure that this requirement is satisfied by the
coupling regime. The coupling between FEM and MD is called handshaking. To
show how this coupling is realised and to check that it gives sensible behaviour, we
consider a 2D rectangular strip through which an elastic wave is travelling. The left
hand side of the strip is treated using the FEM, the right hand side by MD. In order
to realise the handshaking protocol, the finite element grid should approach atomic
resolution near the boundary — grid points next to the boundary should coincide
with equilibrium atomic positions of the MD system.

Within the MD, we use a Lennard—Jones potential as in Chapter 8. The equilib-
rium configuration with this potential in two dimensions is a triangular lattice. The
situation is shown in Figure 13.8. The vertical dashed line in Figure 13.8 separates
the FEM from the MD region. The Hamiltonian is composed of three parts: a FEM
Hamiltonian for the points inside the FEM region, a MD Hamiltonian for the points
in the MD region, and a handshaking Hamiltonian which contains the forces that
the MD particles exert on the FEM points and vice versa. In order to have a smooth
transition from one region to the other, this handshake Hamiltonian interpolates
between a FEM and a MD Hamiltonian. It is built up as follows.

o The FEM triangles in the shaded region carry half of the FEM Hamiltonian; that
is, we formulate the usual FEM Hamiltonian in this region, but multiply it by 1/2.

o The points of the shaded region lying right of the dashed vertical line couple via
a MD Hamiltonian to the points on the left, but this Hamiltonian is also
multiplied by 1/2. Note that such couplings involve in general more than nearest
neighbour points on the triangular grid — we neglect those here.
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Figure 13.8. Strip modelled partly by finite elements and partly by molecular
dynamics.

Three remarks are in place. In the original formulation [14], the MD region is
three-dimensional, whereas the FEM region is only two-dimensional. The transition
is made by averaging the MD points over the z-direction which is taken perpen-
dicular to the FEM grid. Here we shall consider the strictly two-dimensional case
for simplicity. The second remark concerns the treatment of the FEM masses. As
we have seen above, the mass matrix couples the kinetic degrees of freedom at
the vertices of the FEM triangles. However, in the handshake region, we strictly
want to assign the mass of a real atom to the point. For this reason, we use the
lumped mass approximation in the finite element description. In this formulation,
we assign one-third of the mass of each triangle to each of its vertices. This means
that the mass matrix has become diagonal, so that the numerical integration of
the equations of motion has become much simpler as the solution of an implicit
equation at each time step is avoided. The FEM mass is derived from the MD equi-
librium by requiring that the same amount of mass is present per unit area in both
descriptions.

The final remark is that the boundaries of the system in the MD and FEM descrip-
tion do not fit onto each other. In the FEM description, the triangles are taken
uniform, but a MD system with a boundary will have a slightly smaller distance
between the outermost layers than in the bulk, as a result of the fact that the next
nearest-neighbour interactions pull the outermost particles slightly more towards
the interior of the system. This deviation is minor so we do not correct for it.
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Obviously, we could take periodic boundary conditions in the transverse direction,
which implies a cylindrical description (this could be useful for describing a carbon
nanotube). However, this is not compatible with longitudinal waves, as the Poisson
ratio causes the system to expand where it is longitudinally compressed and vice
versa. A periodic boundary condition would not allow for this to happen and cause
unphysical, strong stresses to build up.

Once a FEM and a MD program are working, it is not so much work to couple
them along the lines decribed above. We use the velocity Verlet algorithm which
naturally splits into two steps, separated by a force calculation.

First step:

h
pit + 1) =pi(t) + SFilr(®]; (13.58a)

ri(t + h) = ri(?) + hpi(1); (13.58b)
Calculate F;[r(?)];

Second step:
h
pi(t+h) =pi(t +h) + SFilr(+ h]

These steps must be kept in mind when setting up the algorithm for the full system.
This algorithm looks as follows:

Calculate MD forces;
Calculate FEM forces;
Copy locations of leftmost MD points to a shadow array
in the FEM region;
Copy locations of rightmost FEM points to a shadow array
in the MD region;
FOR TimeStep = 1, MaxStep DO
Set Initial values of boundary points;
Do first integration step (see Eq. (13.58a));
Copy locations of leftmost MD points to a shadow array
in the FEM region;
Copy locations of rightmost FEM points to a shadow array
in the MD region;
Calculate forces in FEM region, including those on the MD particles;
Calculate forces in MD region, including those on the FEM particles;
Add FEM forces acting on MD particles to MD forces;
Add MD forces acting on FEM particles to FEM forces;
Do second integration step [see Eq. (13.58b)];
END FOR.
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Obviously, we should investigate which elasticity matrix should be used in the
FEM domain. This is fully determined by the MD interaction, for which we take
the pairwise Lennard-Jones interaction. We can evaluate the elastic constants by
allowing the MD unit cell to deform, as is done in the Parrinello-Rahman method
[16]. Another method is to measure the stretch resulting from a force applied to
the left- and rightmost particles for a strip of atoms, fully described by MD. The
lateral shrink as a result of the end-to-end stretch then gives us the Poisson ratio. For
simplicity, we shall consider here the 7 = 0 limit, for which we can calculate the
elasticity matrix analytically from the pair potential. The idea is that we can Taylor-
expand the total energy per unit area with respect to the strain to second order, which
corresponds precisely to how the elasticity matrix is defined: the change in energy
per unit area resulting from a strain field € is given by

sV eTCe d°r. (13.59)

T 22 Jg

In our case, we have for the total energy per unit area at small deviations, in the
bulk:

1 aV(Ry) 13’V(Ry) g 8
sV =— § { T (8r{ = &) + s ———-(8ry — 8r ) (S = 8r) |
@ B J j

2Q = org 2 orsors
(13.60)

Greek indices o and g8 denote the Cartesian coordinates — they are summed over
according to the Einstein summation convention. Equation (13.60) is nothing but
a Taylor expansion to second order for the potential in terms of the coordinates.
In equilibrium, the second term vanishes as the total force on each particle van-
ishes. We may write §r{ = uf, where u; has precisely the same meaning as in the
formulation of the finite element method: it is the deviation from equilibrium of

coordinate o of particle i. Now we write w; = r;; — a;;, where a;; is the relative

coordinate of particles 7 and j in equilibrium. We therefore have uf; = a’ &qap, 0 that

i ij ij
we obtain

1 PV(Ry)
SV = 1a ZageaﬁTSy(Saij, (13.61)
i#i Tij o
and we can write
s 1 32V (Ry)
Copys = 5 Zaa—a‘?.‘ (13.62)

i %
i 0oy
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For a pair potential, this can be worked out further to yield

Capys = 219 > {: [V”( rij) — —V (rl])] a“aﬂcﬂ;ag} (13.63)
i#]

We have used the tilde (~) for the elasticity matrix because it is given in terms of

the xy components of the strain. The relation with the C matrix given above for two

dimensions, which used (du,/dy + duy/0x)/2 as the third component, is given by

Ci1 = Crars Cx = Cyyyy (13.64a)
Cp= 6'x)cyyv G = 6'yy)cx (13-64b)
1 . ~ 1 . ~
Ci3= E(Cxxxy + Cxxyx), Cy3 = E(nyxy + nyyx) (13-640)
1 -~ ~ ~ ~
C33 = Z(nyxy + nyyx +nyxy + nyyx) (13-64d)
For a Lennard-Jones potential we find, in reduced units:
76.8 255 O
C=1256 768 0 |. (13.65)
0 0 256

From this we find, for the case of plane stress: v = 1/3 and E = 68. The fact that
= 1/3 shows an important shortcoming of a pair potential: irrespective of the
specific form of the potential, a pair potential always leads to v = 1/3.

Exercises

13.1 In this problem, we study the natural coordinates for triangles. We consider an
‘archetypical’ triangle as shown in Figure 13.9. Now consider a mapping of this
triangle to some other triangle, also shown in Figure 13.9. This can be obtained from
the archetypical one by a translation over the vector r,,/, followed by a linear

transformation. The matrix U of this linear transformation can be found as
/

A, ’r_
U= (;Cga _;‘7 ig _;67), (13.66)
b a c a

where (x/,, y.,) are the Cartesian coordinates of the vector r, etc. We have

O-()06) o

Now we take for the natural coordinates in the archetypical triangle x, y and

1 — (x + y). It is clear that these coordinates assume the value 1 on a, b and ¢
respectively and vanish at the other points. We want the linear transformation of
these coordinates to have the same property. We therefore consider the function

g, y) =f(x,y)
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b

Figure 13.9. Archetypical triangle with two angles of 45° and sides 1, oriented
along the x- and y-axes. Another triangle is shown, which can be obtained from
the archetypical one through a linear transformation.

where f (x,y) = x, say, and where x’, y are the images of x, y under the
transformation U. It now is straightforward to verify that the expressions for the
natural coordinates (13.11) are correct.
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