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Molecular dynamics simulations

8.1 Introduction

In the previous chapter we saw that the experimental values of physical quantities
of a many-particle system can be found as an ensemble average. Experimental
systems are so large that it is impossible to determine this ensemble average by
summing over all the accessible states in a computer. There exist essentially two
methods for determining these physical quantities as statistical averages over a
restricted set of states: the molecular dynamics and Monte Carlo methods. Imagine
that we have a random sample of, say, 107 configurations of the system which are
all compatible with the values of the system parameters. For such a large number
we expect averages of physical quantities over the sample to be rather close to the
ensemble average. It is unfortunately impossible to generate such a random sample;
however, we can generate a sample consisting of a large number of configurations
which are determined successively from each other and are hence correlated. This
is done in the molecular dynamics and Monte Carlo methods. The latter will be
described in Chapter 10.

Molecular dynamics is a widely used method for studying classical many-particle
systems. It consists essentially of integrating the equations of motion of the system
numerically. It can therefore be viewed as a simulation of the system as it develops
over a period of time. The system moves in phase space along its physical trajectory
as determined by the equations of motion, whereas in the Monte Carlo method it
follows a (directed) random walk. The great advantage of the MD method is that it
not only provides a way to evaluate expectation values of static physical quantities;
dynamical phenomena, such as transport of heat or charge, or relaxation of systems
far from equilibrium can also be studied.

In this section we discuss the general principles of the molecular dynamics
method. In the following sections more details will be given and special tech-
niques will be discussed. There exists a vast research literature on this subject and
there are some review papers and books [1–5].
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198 Molecular dynamics simulations

Consider acollectionofN classicalparticles ina rectangularvolumeL1 ×L2 ×L3.
The particles interact with each other, and for simplicity we shall assume that the
interaction force can be written as a sum over pair forces, F(r), whose magnitude
depends only on the distance, r, between the particle pairs and which is directed
between them (see also the previous chapter). In that case the internal force (i.e. the
force due to interactions between the particles) acting on particle number i is given as

Fi(R) =
∑

j=1,N ;
j �=i

F(|ri − rj|)r̂ij. (8.1)

R denotes the position coordinates ri of all particles in the notation introduced in
Section 7.2.1 (P denotes the momenta); r̂ij is a unit vector directed along rj − ri,
pointing from particle i to particle j. In experimental situations there will be external
forces in addition to the internal ones – examples are gravitational forces and forces
due to the presence of boundaries. Neglecting these forces for the moment, we can
use (8.1) in the equations of motion:

d2ri(t)

dt2
= Fi(R)

mi
(8.2)

in which mi is the mass of particle i. In this chapter we take the particles identical
unless stated otherwise. Molecular dynamics is the simulation technique in which
the equations (8.2) are solved numerically for a large collection of particles.

The solutions of the equations of motion describe the time evolution of a real
system although obviously the molecular dynamics approach is approximate for
the following reasons.

• First of all, instead of a quantum mechanical treatment we restrict ourselves to a
classical description for the sake of simplicity. In Chapter 9, we shall describe a
method in which ideas of the density functional description for quantum
many-particle systems (Chapter 5) are combined with the classical molecular
dynamics approach. The importance of the quantum effects depends strongly on
the particular type of system considered and on the physical parameters
(temperature, density …).

• The forces between the particles are not known exactly: quantum mechanical
calculations from which they can be determined are subject to systematic errors
as a result of the neglect of correlation effects, as we have seen in previous
chapters. Usually these forces are given in a parametrised form, and the
parameters are determined either by ab initio calculations or by fitting the
results of simulations to experimental data. There exist systems for which the
forces are known to high precision, such as systems consisting of stars and
galaxies at large mutual distances and at nonrelativistic velocities where the
interaction is largely dominated by Newton’s gravitational 1/r2 force.
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Figure 8.1. Periodic boundary conditions for molecular dynamics. Each particle
interacts not only with every other particle in the system but also with all other
particles in the copies of the system. The arrows from the white particle point to
the nearest copies of the other particles in the system.

• Another approximation is inherent to most computer simulations aiming at a
description of the real world: the system sizes in such simulations are much
smaller than those of experimental systems. In the limit where the correlation
length is much smaller than the system size this does not matter too much, and
in the opposite regime, in which the correlation length exceeds the system size
we can use the finite-size scaling methods discussed in Chapter 5 in order to
extrapolate results for physical quantities in the finite system to those of the
infinite system (although second order transitions are seldom studied in
molecular dynamics because of the heavy demands on computing resources).
The finiteness of the system size is felt through the presence of the boundary.
The convention adopted in the vast majority of molecular simulations is to use
periodic boundary conditions (PBC) as it is assumed that for these boundary
conditions the behaviour of the system is most similar to that of a system of the
same size embedded in an infinite system. In fact, with periodic boundary
conditions the system of interest is surrounded by similar systems with exactly
the same configuration of particles at any time (see Figure 8.1). The interaction
between two particles i and j is then given by the following expression:

FPBC(ri − rj) =
∑

n

F



∣∣∣∣∣∣ri − rj +

3∑
µ=1

Lµnµ

∣∣∣∣∣∣

 (8.3)
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where Lµ are vectors along the edges of the rectangular system volume and the
first sum on the right hand side is over all vectors n with integer coefficients nµ.
The force F is directed along the line connecting particle i and the image
particle rj −∑3

µ=1 Lµnµ according to the convention of Eq. (8.1). Of course,
calculating terms of this infinite sum until convergence is achieved is a
time-consuming procedure, and in the next section we shall consider techniques
for approximating this sum efficiently.

• The time average must obviously be evaluated over a finite time. For liquid
argon, which is the most widely studied system in molecular dynamics because
simple Lennard–Jones pair forces yield results which are in very good
agreement with experiment, the typical time step used in the numerical
integration of the equations of motion is about 10−14 seconds, which means that
for the ∼105 integration steps which can usually be carried out in a reasonable
amount of computer time, the total simulation is restricted to about
10−9 seconds. The correlation time of the system should therefore be much
smaller than this. There is also a limitation in time because of the finite size of
the system. This might in principle become noticeable when the particles have
travelled on average more than half the linear system size, but in practice such
effects occur at much longer time scales, of the order of the recurrence time, the
time after which the system returns to the initial configuration (in continuum
mechanics, this is called the Poincaré time).

• The numerical integration algorithm is not infinitely accurate. This forces us to
make some optimum choice between speed and accuracy: the larger the
integration time step, the more inaccurate the results of the simulation. In fact, the
system will follow a trajectory in phase space which deviates from the trajectory
it would follow in reality. The effect on the physical quantities as measured in the
simulation is of course related to this deviation in the course of time.

We may summarise by saying that MD is – in principle – a direct simulation
of a many-particle system but we have seen that, just as with any computational
technique in physics, MD simulations must be carried out with considerable care.
It is furthermore advisable to carry out reference tests for systems for which exact
results exist or for which there is an extensive literature for comparison.

8.2 Molecular dynamics at constant energy

In the previous section we sketched the molecular dynamics method briefly for the
simplest case in which the equations of motion for a collection of particles are solved
for forces depending on the relative positions of the particles only. In that case energy
and momentum are conserved.1 Trivially, the particle number and system volume are

1 The angular momentum is not conserved because of the periodic boundary conditions breaking the
spherical symmetry of the interactions.
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conserved too, so the time averages of physical quantities obtained by this type of
simulation are equivalent to averages in the microcanonical or (NVE) ensemble. In
this section we describe the microcanonical MD method in more detail.

The algorithm of a standard MD simulation for studying systems in equilibrium
is the following:

• Initialise;
• Start simulation and let the system reach equilibrium;
• Continue simulation and store results.

We will now describe these main steps in more detail.
Initialise: The number of particles and the form of the interaction are specified.

The temperature is usually of greater interest than the total energy of the system
and is therefore usually specified as an input parameter. We shall see below how
the system can be pushed toward the desired temperature.

The particles are assigned positions and momenta. If a Lennard–Jones potential is
used, the positions are usually chosen as the sites of a Bravais-fcc lattice, which is the
ground state configuration of the noble gases like argon (although the Lennard–Jones
system is hexagonal close-packed in the ground state [6]). The fcc lattice contains
four particles per unit cell, and for a cubic volume the system contains therefore 4M3

particles, M = 1, 2, . . .This is the reason why MD simulations with Lennard–Jones
interactions are often carried out with particle numbers 108, 256, 500, 864, ….

The velocities are drawn from a Maxwell distribution with the specified temper-
ature. This is done by drawing the x, y and z velocity components for each particle
from a Gaussian distribution; for the x-component of the velocity this distribution
is exp[−mv2

x/(2kBT)]. In Appendix B3 it is described how random numbers with
a Gaussian distribution can be generated. After generating the momenta, the total
momentum is made equal to zero by calculating the average momentum p̄ per
particle, and then subtracting an amount p̄ from all the individual momenta pi.

Start simulation and let the system reach equilibrium: The particles being
released from fcc lattice positions, the system is generally not in equilibrium and
during the initial phase of the simulation it is given the opportunity to relax. We now
describe how the integration of the equations of motion is carried out and how the
forces are evaluated. Finally we shall explain how in this initial phase the desired
temperature is arrived at.

Numerical algorithms for molecular dynamics will be considered in detail in
Section 8.4. Suffice it here to mention briefly the most widely used algorithm
which is simple and reliable at the same time – the Verlet algorithm (see also
Appendix A7.1). The standard form of the Verlet algorithm for the integration of
the equation of motion of a single particle subject to a force F depending only on
the position of the particle reads

r(t + h) = 2r(t)− r(t − h)+ h2F[r(t)]/m (8.4)
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where r(t) is the position of the particle at time t = nh (h is the time step; n is an
integer). From now on we choose units such that m = 1. The error per time step is of
order h4 and a worst case estimate for the error over a fixed time interval containing
many time steps is of order h2 (see Problem A3). To start up the algorithm we need
the positions of the particles at two subsequent time steps. As we have only the
initial (t = 0) positions and velocity at our disposal, the positions at t = h are
calculated as

r(h) = r(0)+ hv(0)+ h2

2
F[r(t = 0)] (m ≡ 1), (8.5)

with an error of order h3.
During the integration, the velocities can be calculated as

v(t) = r(t + h)− r(t − h)

2h
+ O(h2). (8.6)

When using periodic boundary conditions in the simulation, we must check for each
particle whether it has left the simulation cell in the last integration step. If this is
the case, the particle is translated back over a lattice vector Lµ to keep it inside
the cell (we shall see below that this procedure facilitates the common procedure
for evaluating the forces with periodic boundary conditions). The velocity must
obviously be determined before such a translation.

There exist two alternative formulations of the Verlet algorithm, which are exactly
equivalent to it in exact arithmetic but which are less susceptible to errors resulting
from finite numerical precision in the computer than the original version. The first
of these, the leap-frog form, introduces the velocities at time steps precisely in
between those at which the positions are evaluated:

v(t + h/2) = v(t − h/2)+ hF[r(t)], (8.7a)

r(t + h) = r(t)+ hv(t + h/2). (8.7b)

These steps are then repeated over and over. Note that they must always be applied
in the given order: the second step uses v(t + h/2) which is calculated in the first
step.

Another form is the so-called velocity-Verlet algorithm [7] which is also more
stable than the original Verlet form and which, via the definition

v(t) = r(t + h)− r(t − h)

2h
(8.8)

evaluates velocities and positions at the same time instances:

r(t + h) = r(t)+ hv(t)+ h2F(t)/2, (8.9a)

v(t + h) = v(t)+ h[F(t + h)+ F(t)]/2. (8.9b)
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This form is most convenient because it is very stable with respect to errors due to
finite precision arithmetic, and it does not require additional calculations in order
to find the velocities. It should be noted that all formulations have essentially the
same memory requirements. It may seem that, as this algorithm needs two forces
the second step, we need two arrays for these, one containing F(t) and the other
F(t + h). However, the following form of the algorithm is exactly equivalent and
avoids the need for two force arrays:

ṽ(t) = v(t)+ hF(t)/2, (8.10a)

r(t + h) = r(t)+ hṽ(t), (8.10b)

v(t + h) = ṽ(t)+ hF(t + h)/2. (8.10c)

The new force F(t + h) is calculated between the second and third step.
The force acting on particle i results from the interaction forces between this

particle and all the other particles in the system – usually pair-wise interactions
are used. The calculation of the forces therefore takes a relatively long time as
this requires O(N2) steps. A problem in the evaluation of the force arises from
the assumption of periodic boundary conditions. These imply that the system is
surrounded by an infinite number of copies with exactly the same configuration
as in Figure 8.1. A particle therefore interacts not only with each partner j in the
system cell we are considering but also with the images of particle j in all the copies
of the system. This means that in principle an infinite number of interactions has
to be summed over. In many cases, the force decays rapidly with distance, and
in that case remote particle copies will not contribute significantly to the force. If
the force between the particles can safely be neglected beyond separations of half
the linear system size, the force evaluation can be carried out efficiently by taking
into account, for each particle in the system, only the interactions with the nearest
copy of each of the remaining particles (see Figure 8.1): each infinite sum over all
the copies is replaced by a single term! This is the minimum image convention. In
formula, for a cubic system cell the minimum image convention reads

rmin
ij = min

n
|ri − rj + nµLµ| (8.11)

with the same notation as in Eq. (8.3), but where the components of nµ assume
the values 0, ±1, provided all the particles are kept within the system cell, by
translating them back if they leave this cell. The potential is no longer analytic in
this convention, but discontinuities will obviously be unimportant if the potential
is small beyond half the linear system size.

Often it is possible to cut the interactions off at a distance rcut-off smaller than half
the linear system size without introducing significant errors. In that case the forces
do not have to be calculated for all pairs. However, all pairs must be considered to
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check whether their separation is larger than rcut-off . In the same paper in which he
introduced the midpoint integration algorithm into MD, Verlet [8] proposed keeping
a list of particle pairs whose separation lies within some maximum distance rmax and
updating this list at intervals of a fixed number of steps – this number lies typically
between 10 and 20. The radius rmax is taken larger than rcut-off and must be chosen
such that between two table updates it is unlikely for a pair not in the list to come
closer than rcut-off . If both distances are chosen carefully, the accuracy can remain
very high and the increase in efficiency is of the order of a factor of 10 (the typical
relative accuracy in macroscopic quantities in a MD simulation is of order 10−4).

There exists another method for keeping track of which pairs are within a certain
distance of each other: the linked-cell method. In this method, the system is divided
up into (rectangular) cells. Each cell is characterized by its integer coordinates
IX,IY,IZ in the grid of cells. The cell size is chosen larger than the interaction range
which is about the size of rmax > rcut-off in the Verlet method. If we wanted a list
of particles for each cell, we could simply restrict the interactions to particle pairs
in the same, or in neighbouring cells. However, as particles will leave and enter the
cells, the bookkeeping of these lists becomes a bit cumbersome. This bookkeeping
can however be done very efficient by using a list of particle indices. The procedure
is reminiscent of the use of pointers in a linked list. We need two ingredients: we
must have a routine which generates a sort of table containing information about
which particle is in what cell, and we need to organise the force calculation such
that it uses this information.

To be specific, let us assume that there are M × M × M cells. The particles are
numbered 1 through N , so each particle has a definite index. We use an integer array
called ‘Header’ which is of size M × M × M: Header(IX,IY,IZ) tells us the highest
particle index to be found in cell IX,IY,IZ. We also introduce an integer array ‘Link’
which is of size N . The arrays Header and Link are filled in the following code:
dimension header(M,M,M), link(N)

Set Header (IX,IY,IZ) to 0
Set Link(I) to 0
FOR I = 1,N DO

IX = int(M*x(I)/L)+1
IY = int(M*y(I)/L)+1
IZ = int(M*z(I)/L)+1
link(i) = header(IX,IY,IZ)
header(IX,IY,IZ) = I

END FOR

Now, Header contains the highest index present in all cells. Furthermore, for particle
I, Link(I) is another particle in the same cell. To find all particles in cell IX, IY, IZ,
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we look at Header(IX,IY,IZ) and then move down from particle I to the following
by taking for the next particle the value Link(I). Using this in the force calculation
leads to the pseudocode:

FOR all cells with indices (IX,IY,IZ) DO
{Fill the list xt, yt and zt with the particles of the central cell}

icnt = 0;
j = Header(IX,IY,IZ);
WHILE (j>0) DO

j = link(j);
icnt = icnt + 1;
xt(icnt) = x(j); yt(icnt) = y(j); zt(icnt) = z(j);
LocNum = icnt;

END WHILE
{Now, LocNum is the number of particles in the central cell}

FOR half of the neighbouring cells DO
Find particles in the same way as central cell
and append them to the list xt, yt, zt;

END FOR
Calculate Lennard–Jones forces between all particles in the central cell;
Calculate Lennard–Jones forces between particles in central and

neighbouring cells;
END FOR

Note that we loop over only half the number of neighbouring cells in order to avoid
double counting of particle pairs. The cell method is less efficient than the neighbour
list method as the blocks containing possible interaction candidates for each particle
substantially bigger than the spheres of the neighbour list. The advantage of the
present method lies in its suitability for parallel computing (see Chapter 16).

Cutting off the force violates energy conservation although the effect is small if
the cut-off radius is chosen suitably. To avoid this violation, the pair potential U(r)
can be shifted so that it becomes continuous at rcut-off . The shifted potential can be
written in terms of the original one as

Ushift(r) = U(r)− U(rcut-off). (8.12)

The force is not affected by this shift; it remains discontinuous at the cut-off and
this gives rise to inaccuracies in the integration. Applying a shift in the force in
addition to the shift in the potential yields [9, 10]

Uforce shift(r) = U(r)− U(rcut-off)− d

dr
U(rcut-off)(r − rcut-off) (8.13)
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and now the force and the potential are continuous. These adjustments to the
potential can be compensated for by thermodynamic perturbation theory (see
Ref. [11]).

Electric and gravitational forces decay as 1/r and cannot be truncated beyond a
finite range without introducing important errors. These systems will be treated in
Section 8.7.

The time needed to reach equilibrium depends on how far the initial configuration
was from equilibrium, and on the relaxation time (see Section 7.4). To check whether
equilibrium has been reached, it is best to monitor several physical quantities such
as kinetic energy and pressure, and see whether they have levelled down. This can be
judged after completing the simulation by plotting out the values of these physical
quantities as a function of time. It is therefore convenient to save all these values
on disk during the simulation and analyse the results afterwards. It is also possible
to measure correlation times along the lines of Section 7.4, and let the system relax
for a period of, for example, twice the longest correlation time measured.

A complication is that we want to study the system at a predefined temperature
rather than at a predefined total energy because temperature is easily measurable
and controllable in experimental situations. Unfortunately, we can hardly forecast
the final temperature of the system from the initial configuration. To arrive at the
desired value of the temperature, we rescale the velocities of the particles a number
of times during the equilibration phase with a uniform scaling factor λ according to

vi(t) → λvi(t) (8.14)

for all the particles i = 1, . . . , N . The scaling factor λ is chosen such as to arrive at
the desired temperature TD after rescaling:

λ =
√
(N − 1)3kBTD∑N

i=1 mv2
i

. (8.15)

Note the factor N − 1 in the numerator of the square root: the kinetic energy is
composed of the kinetic energies associated with the independent velocities, but as
for interparticle interactions with PBC the total force vanishes, the total momentum
is conserved and hence the number of independent velocity components is reduced
by 3. This argument is rather heuristic and not entirely correct. We shall give a more
rigorous treatment of the temperature calculation in Section 10.7.

After a rescaling the temperature of the system will drift away but this drift will
become less and less important when the system approaches equilibrium. After a
number of rescalings, the temperature then fluctuates around an equilibrium value.
Now the ‘production phase’, during which data can be extracted from the simulation,
begins.



8.2 Molecular dynamics at constant energy 207

Continue simulation and determine physical quantities: Integration of the
equations of motion proceeds as described above. In this part of the simulation,
the actual determination of the static and dynamic physical quantities takes place.
We determine the expectation value of a static physical quantity as a time average
according to

A = 1

n − n0

n∑
ν>n0

Aν . (8.16)

The indices ν label the n time steps of the numerical integration, and the first n0

steps have been carried out during the equilibration. For determination of errors in
the measured physical quantities, see the discussion in Section 7.4.

Difficulties in the determination of physical quantities may arise when the para-
meters are such that the system is close to a first or second order phase transition
(see the previous chapter): in the first order case, the system might be ‘trapped’ in
a metastable state and in the second order case, the correlation time might diverge
for large system sizes.

In the previous chapter we have already considered some of the quantities of
interest. In the case of a microcanonical simulation, we are usually interested in the
temperature and pressure. Determination of these quantities enables us to determine
the equation of state, a relation between pressure and temperature, and the system
parameters – particle number, volume and energy (NVE). This relation is hard to
establish analytically, although various approximate analytical techniques for this
purpose exist: cluster expansions, Percus–Yevick approximation, etc. [11].

The pair correlation function is useful not only for studying the details of the
system but also to obtain accurate values for the macrosopic quantities such as the
potential energy and pressure, as we shall see below. The correlation function is
determined by keeping a histogram which contains for every interval [i�r, (i + 1)
�r] the number of pairs n(r) with separation within that range. The list can be
updated when the pair list for the force evaluation is updated. The correlation
function is found in terms of n(r) as

g(r) = 2V

N(N − 1)

[ 〈n(r)〉
4πr2�r

]
. (8.17)

Similar expressions can be found for time-dependent correlation functions – see
Refs. [2] and [11].

If the force has been cut off during the simulation, the calculation of average
values involving the potential U requires some care. Consider for example the
potential energy itself. This is calculated at each step taking only the pairs with
separation within the minimum cut-off distance into account; taking all pairs into
account would imply losing the efficiency gained by cutting off the potential. The
neglect of the tail of the potential can be corrected for by using the pair correlation
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function beyond rcut-off :

〈U〉 = 〈U〉cut-off + 2π
N(N − 1)

V

∫ ∞

rcut-off

r2dr U(r)g(r) (8.18)

where 〈· · ·〉cut-off is the average restricted to pairs with separation smaller than
rcut-off . Of course, we can determine the correlation function for r up to half the
linear system size only because of periodic boundary conditions. Verlet [12] has
used the Percus–Yevick approximation to extrapolate g beyond this range. Often g
is simply approximated by its asymptotic value g(r) ≡ 1 for large r.

Similarly, the virial equation is corrected for the potential tail:

P

nkBT
= 1 − 1

3NkBT

〈∑
i

∑
j>i

rij
∂U(R)

∂rij

〉
cut-off

− 2πN

3kBTV

∫ ∞

rcut-off

r3 ∂U(r)

∂r
g(r)dr,

(8.19)
where g(r) can also be replaced by 1.

The specific heat can be calculated from Lebowitz’s formula, see Eq. (7.37).

8.3 A molecular dynamics simulation program for argon

In the previous section we described the structure of a MD program and here we give
some further details related to the actual implementation. The program simulates
the behaviour of argon. In 1964, Rahman [13] published a paper on the properties
of liquid argon – the first MD simulation involving particles with smoothly varying
potentials. Previous work by Alder and Wainwright [14] was on hard sphere fluids.
Rahman’s work was later refined and extended by Verlet [8] who introduced several
features that are still used, as we have seen in the previous section.

The Lennard–Jones pair potential turns out to give excellent results for argon:

U(r) = 4ε

[(σ
r

)12 −
(σ

r

)6
]

. (8.20)

The optimal values for the parameters ε and σ are ε/kB = 119.8 K and σ =
3.405 Å respectively.

In the initialisation routine, the positions of a face centred cubic lattice are gen-
erated. For an L × L × L system containing 4M3 particles, the fcc lattice constant a
is a = L/M. It may be safer to put the particles not exactly on the boundary facets
of the system because as a result of rounding errors it might not always be clear
whether they belong to the system under consideration or a neighbouring copy.

The procedure in Appendix B3 for generating random numbers with a Gaussian
distribution should be used in order to generate momenta according to a Maxwell
distribution. First generate all the momenta with some arbitrary distribution width.
Then calculate the total momentum ptot and subtract a momentum p̄ = ptot/N from
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each of the momenta in order to make the total momentum zero. Now the kinetic
energy is calculated and then all momenta are rescaled to arrive at the desired kinetic
energy.

When calculating the forces, the minimum image convention should be adopted.
It is advisable to start without using a neighbour list. For the minimum image
convention it should be checked for each pair (i, j) whether the difference of the x-
components xi −xj is larger or smaller than L/2 in absolute value. If it is larger, then
an amount L should be added to or subtracted from this difference to transform it to
a value which is smaller than L/2 (in absolute value). In many codes, this translation
is implemented as follows:

x → x − [x/L] ∗ L, (8.21)

where [ ] denotes the integer part. This procedure is then repeated for the y- and
z-components. Potential and force may be adjusted according to Eqs (8.12) and
(8.13).

The equations of motion are solved using the leap-frog or the velocity form of
the Verlet algorithm. A good value for the time step is 10−14 s which in units of
(mσ 2/ε)1/2 is equal to about 0.004. Using the argon mass as the unit of mass, σ as
the unit of distance and τ = (mσ 2/ε)1/2 as the unit of time, the x-component of the
force acting on particle i resulting from the interaction with particle j is given by

Fij
x = (xi − xj)(48r−14

ij − 24r−8
ij ) (8.22)

with similar expressions for the y- and z-components.
After each step in the Verlet/leap-frog algorithm, each particle should be checked

to see whether it has left the volume. If this is the case, it should be translated over
a distance ±L along one or more of the Cartesian axes in order to bring it back into
the system in accordance with the periodic boundary conditions.

During equilibration, the velocities (momenta) should be rescaled at regular
intervals. The user might specify the duration of this phase and the interval between
momentum rescalings.

During the production phase, the following quantities should be stored in a file
at each time step: the kinetic energy, potential energy, and the virial∑

ij

rijF(rij). (8.23)

Furthermore, the program should keep a histogram-array containing the numbers
of pairs found with a separation between r and r + � for, say, � = L/200 from
which in the end the correlation function can be read off.
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Table 8.1. Molecular dynamics data for
thermodynamic quantities of the Lennard–Jones liquid.

ρ(1/σ 3) T0(ε/kB) T βP/ρ U(ε)

0.88 1.0 0.990 (2) 2.98 (2) −5.704 (1)
0.80 1.0 1.010 (2) 1.31 (2) −5.271 (1)
0.70 1.0 1.014 (2) 1.06 (4) (5) −4.662 (1)

T0 is the desired temperature; T is the temperature as determ-
ined from the simulation; ρ is the density: ρ = N/V . All
values are in reduced units.

programming exercise

Write a program that simulates the behaviour of a Lennard–Jones liquid with
the proper argon parameters given above.

Check 1 To check the program, you can use small particle numbers, such as 32 or
108. Check whether the program is time-reversible by integrating for some time
(without rescaling) and then reversing velocities. The system should then return
to its initial configuration (graphical display of the system might be helpful).

Check 2 The definite check is to compare your results for argon with literature.
A good value for the equilibration time is 10.0 τ and rescalings could take place
after every 10 or 20 time steps. A sufficiently long simulation time to obtain
accurate results is 20.0 τ (remember the time step is 0.004 τ ). In Table 8.1
you can find a few values for the potential energy and pressure for different
temperatures. Note that the average temperature in your simulation will not be
precisely equal to the desired value. In Figure 7.1, the pair correlation function
for ρ = N/V = 1.06 and T = 0.827 is shown.

It is interesting to study the specific heat (Eq. (7.37)) in the solid and in the gas
phase. You may compare the behaviour with that of an ideal gas, cV = 3kB/T
per particle, and for a harmonic solid, cv = 3kBT per particle (this is the Dulong–
Petit law).

Note that phase transitions are difficult to locate, as there is a strong hysteresis in
the physical quantities there. It is however interesting to obtain information about
the different phases. For T = 1, ρ = 0.8 the argon Lennard–Jones system is found
in the liquid phase, and for ρ = 1.2 and T = 0.5 in the solid phase. The gas
phase is found for example with ρ = 0.3 and and T = 3.0. It is very instructive
to plot the correlation function for the three phases and explain how they look.
Another interesting exercise is to calculate the diffusion constant by plotting the
displacement as a function of time averaged over all particles. For times smaller
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than the typical collision time (time of free flight), you should find

〈x2〉 ∝ t2, (8.24)

and this crosses over to diffusive behaviour

〈x2〉 = Dt, (8.25)

with D the diffusion constant. In the solid phase, the diffusion constant is 0. In the
gas phase, the diffusive behaviour sets in at later times than in the fluid.

If the program works properly, keeping a Verlet neighbour list as discussed
in the previous section can be implemented. Verlet [8] used rcut-off = 2.5σ and
rmax = 3.3σ . A more detailed analysis of the increase in efficiency for various
values of rmax with rcut-off = 2.5σ shows that rmax = 3.0σ with the neighbour list
updated once every 25 integration steps is indeed most efficient [2, 15].

programming exercise

Implement the neighbourlist in your program and check whether the results
remain essentially the same. Determine the increase in efficiency.

8.4 Integration methods: symplectic integrators

There exist many algorithms for integrating ordinary differential equations, and a
few of these are described in Appendix A. In this section, we consider the particular
case of numerically integrating the equations of motion for a dynamical system
described by a time-independent Hamiltonian, of which the classical many-particle
system at constant energy is an example. Throughout this section we consider the
equation of motion for a single particle in one dimension. The discussion is easily
generalised to more particles in more dimensions.

The Verlet algorithm is the most popular algorithm for molecular dynamics and
we shall consider it in more detail in the next subsection. Before doing so, we
describe a few criteria which were formulated by Berendsen and van Gunsteren
[16] for integration methods for molecular dynamics. First of all, accuracy is an
important criterion: it tells us to which power of the time step the numerical traject-
ory will deviate from the exact one after one integration step (see also Appendix A).
Note that the prefactor of this may diverge if the algorithm is unstable (e.g. close to a
singularity of the trajectory). The accuracy is the criterion that is usually considered
in numerical analysis in connection with integration methods.

Two further criteria are related to the behaviour of the energy and other con-
served quantities of a mechanical system which are related to symmetries of the
interactions. Along the exact trajectory, energy is conserved as a result of the time-
translation invariance of the Hamiltonian, but the energy of the numerical trajectory
will deviate from the initial value and this deviation can be characterised by its drift,
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a steady increase or decrease, and the noise, fluctuations on top of the drift. Drift is
obviously most undesirable. In microcanonical MD we want to sample the points in
phase space with a given energy; these points form a hypersurface in phase space –
the so-called energy surface. If the system drifts away steadily from this plane it is
obviously not in equilibrium.

It is very important to distinguish in all these cases between two sources of
error: those resulting from the numerical integration method as opposed to those
resulting from finite precision arithmetic, inherent to computers. For example, we
shall see below that the Verlet algorithm is not susceptible to energy drift in exact
arithmetic. Drift will however occur in practice as a result of finite precision of
computer arithmetic, and although different formulations of the Verlet algorithm
have different susceptibility to this kind of drift, this depends also on the particular
way in which numbers are rounded off in the computer.

Recently, there has been much interest in symplectic integrators. After con-
sidering the Verlet algorithm in some detail, we shall describe the concept of
symplecticity2 and its relevance to numerical integration methods.

8.4.1 The Verlet algorithm revisited

Properties of the Verlet algorithm

In this section we treat the Verlet algorithm

x(t + h) = 2x(t)− x(t − h)+ h2F[x(t)] (8.26)

in more detail with emphasis on issues which are relevant to MD. A derivation of
this algorithm can be found in Appendix A7.1. The error per integration step is
of the order h4. Note that we take the mass of the particle(s) involved equal to 1.
Unless stated otherwise, we analyse the one-dimensional single-particle version of
the algorithm. The momenta are usually determined as

p(t) = [x(t + h)− x(t − h)]/(2h)+ O(h2). (8.27)

Note that there is no need for a more accurate formula, as the accumulated error in
the positions after many steps is also of order h2. We shall check this below, using
also a more accurate expression for the momenta [16]:

p(t) = [x(t + h)− x(t − h)]/(2h)− h

12
{F[x(t + h)] − F[x(t − h)]} + O(h3).

(8.28)

This form can be derived by subtracting the Taylor expansions for x(t + h) and
x(t − h) about t, and approximating dF[x(t)]/dt by {F[x(t + h)] − F[x(t − h)]}/h.

2 Some authors use the term ‘symplecticness’ instead of ‘symplecticity’.
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Figure 8.2. The energy of the harmonic oscillator determined using the various
velocity estimators described in the text. E1 is the energy using (8.29), E2 uses
(8.27) and E3 was calculated using (8.28).

In the leap-frog version, we have the velocities at our disposal for times halfway
between those at which the positions are given:

p(t + h/2) = [x(t + h)− x(t)]/h + O(h2). (8.29)

Each of the expressions (8.27–8.29) for the momentum gives rise to a different
expression for the energy.

We first analyse the different ways of calculating the total energy for the simple
case of the one-dimensional harmonic oscillator

H = (p2 + x2)/2 (8.30)

and we can use any of the formulae (8.27–8.29) for the momentum. In Figure 8.2
the different energy estimators are shown as a function of time for the harmonic
oscillator which is integrated using the Verlet algorithm with a time step h = 0.3.
This is to be compared with the period T = 2π of the motion x(t) = cos(t) (for
appropriate initial conditions). It is seen that the leap-frog energy estimator is an
order of magnitude worse than the other two. This is not surprising, since the fact
that the velocity is not calculated at the same time instants as the position results
in deviation of the energy from the continuum value of order h instead of h2 when
using (8.27). The energy estimator using third order momenta according to (8.28)
is better than the second order form. Note that the error in the position accumulates
in time to give O(h2) (see Problem A3), so that there is no point in calculating the
momenta with a higher order of accuracy, as this will not yield an order of magnitude
improvement. The fact that the error for the third order estimator is about a factor
of 3 better than that of the second order one for the harmonic oscillator does not
therefore indicate a systematic trend. More importantly, the error in both estimators
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(8.27) and (8.28) does indeed scale as h2. In the following we determine momenta
according to Eq. (8.27). In the leap-frog version the momentum estimator is

p(t) = [p(t + h/2)+ p(t − h/2)]/2 + O(h2). (8.31)

The results for the various energy estimators can be obtained by solving the
harmonic oscillator in the Verlet algorithm analytically. The ‘Verlet harmonic
oscillator’ reads

x(t + h) = 2x(t)− x(t − h)− h2x(t). (8.32)

If we substitute x(t) = exp(iωt) into the last equation, we obtain

cos(ωh) = 1 − h2/2 (8.33)

and this defines a frequency ω differing by an amount of order h2 from the angular
frequency ω = 1 of the exact solution. The difference between the numerical and
the exact solution will therefore show a slow beat.

A striking property of the energy determined from the Verlet/leap-frog solution
is that it does not show any drift in the total energy (in exact arithmetic). This stabil-
ity follows directly from the fact that the Verlet algorithm is time-reversible, which
excludes steady increase or decrease of the energy for periodic motion. In a molecu-
lar dynamics simulation, however, the integration time, which is the duration of the
simulation, is much smaller than the period of the system, which is the Poincaré
time, that is the time after which the system returns to its starting configuration.
The error in the energy might therefore grow steadily during the simulation. It turns
out, however, that the deviation of the energy remains bounded in this case also, as
the Verlet algorithm possesses an additional symmetry, called symplecticity. Sym-
plecticity will be described in detail in Section 8.4.2. Here we briefly describe what
the consequences of symplecticity are for an integration algorithm. Symplecticity
gives rise to conserved quantities, and in particular, it can be shown that a discrete
analogue of the total energy is rigorously conserved (in exact arithmetic) [17]. It
turns out that this discrete energy deviates from the continuum energy at most an
amount of order hk, for some positive integer k. Therefore, the energy cannot drift
away arbitrarily and it follows that the noise remains bounded.

To illustrate this point we return to the harmonic oscillator. In this particular
case we can actually determine the conserved discrete energy. In the leap-frog
formulation:

p(t + h/2) = p(t − h/2)− hx(t); (8.34a)

x(t + h) = x(t)+ hp(t + h/2), (8.34b)

it is equal to [18]

HD = 1
2 [p(t − h/2)2 + x(t)2 − hp(t − h/2)x(t)]. (8.35)
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The fact that this quantity is conserved can also be checked directly using (8.34b).
This energy is equal to 1/2−h2/8 for the solution cos(ωt)withω given in Eq. (8.33).
For general potentials, the discrete energy is not known.

As mentioned before, the absence of drift in the energy in the case of the harmonic
oscillator can be explained by the time-reversibility of the Verlet algorithm, and
comparisons with Runge–Kutta integrators for example, which are in general not
time-reversible for potentials such as the harmonic oscillator, do not convincingly
demonstrate the necessity for using a symplectic algorithm. Symplecticity does
however impose a restriction on the noise, but time-reversibility does not.

Symplectic integrators are generally recommended for integrating dynamical
systems because they generate solutions with the same geometric properties in
phase space as the solutions of the continuum dynamical system. The fact that the
deviation of the energy is always bounded is a pleasant property of symplectic
integrators. Symplectic integrators are considered in more detail in Section 8.4.2.

Finite precision of computer arithmetic obviously does not respect the symplectic
geometry in phase space. Hockney and Eastwood observed that when numbers are
rounded off properly in the computer, the system tends to heat up because the
rounding effects can be viewed as small random forces acting on the particles [19].
If real numbers are systematically truncated to finite precision numbers, the system
cools down slowly. Both effects are clearly signs of nonsymplectic behaviour.

Several classes of symplectic integrators with explicit formulas for different
orders of accuracy have been found. Runge–Kutta–Nystrom integrators (not to be
confused with ordinary Runge–Kutta algorithms) have been studied by Okunbor
and Skeel [20]. Yoshida [21] and Forest [22] have considered Lie-integrators. Their
approach follows rather naturally from the structure of the symplectic group, as we
shall see in Section 8.4.2.3

Let us make an inventory of relevant symmetry properties of integrators. First of
all, time-reversibility is important. If it is present in the equations of motion, as is
usually the case in MD, it is natural to require it in the integration method. Another
symmetry is phase space conservation. This is a property of the trajectories of the
continuum equations of motion – this property is given by Liouville’s theorem –
and it is useful to have our numerical trajectories obeying this condition too (note
that time-reversibility by itself does not guarantee phase space conservation). The
most detailed symmetry requirement is symplecticity, which will be considered in
greater detail below (Section 8.4.2). This incorporates phase space conservation and
conservation of a number of conserved quantities, the so-called Poincaré invariants.
The symplectic symmetry properties can also be formulated in geometrical terms

3 Gear algorithms [16, 23, 24] have been fashionable for MD simulations. These are predictor–corrector
algorithms requiring only one force evaluation per time step. Gear algorithms are not symplectic and they are
becoming less popular for that reason.
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as we shall see below. Most important for molecular dynamics is the property
that the total energy fluctuates within a narrow range around the exact one. Some
comparison has been carried out between nonsymplectic phase space conserving
and symplectic integrators [25], and this gave no indication of the superiority of
symplectic integrators above merely phase-space conserving ones. As symplectic
integrators are not more expensive to use than nonsymplectic time-reversible ones,
their use is recommended as the safest option. Investigating the merits of the various
classes of integration methods for microcanonical MD is a fruitful area for future
research.

Frictional forces

Later we shall encounter extensions of the standard MD method where a fric-
tional force is acting on the particles along the direction of the velocity. The Verlet
algorithm can be generalised to include such frictional forces and we describe this
extension for the one-dimensional case which can easily be generalised to more
dimensions. The continuum equation of motion is

ẍ = F(x)− γ ẋ, (8.36)

and expanding x(h) and x(−h) around t = 0 in the usual way (see Appendix A7.1)
gives

x(h) = x(0)+ hẋ(0)+ h2[−γ ẋ(0)+ F(0)]/2 + h3...
x (0)/6 + O(h4) (8.37a)

x(−h) = x(0)− hẋ(0)+ h2[−γ ẋ(0)+ F(0)]/2 − h3...
x (0)/6 + O(h4). (8.37b)

Addition then leads to

x(h) = 2x(0)− x(−h)+ h2[−γ ẋ(0)+ F(0)] + O(h4) (8.38)

where ẋ(0) remains to be evaluated. If we write

ẋ(0) = [x(h)− x(−h)]/(2h)+ O(h2), (8.39)

and substitute this into (8.38), we obtain

(1 + γ h/2)x(h) = 2x(0)− (1 − γ h/2)x(−h)+ h2F(0)+ O(h4). (8.40)

A leap-frog version of the same algorithm is

x(h) = x(0)+ hp(h/2); (8.41a)

p(h/2) = (1 − γ h/2)p(−h/2)+ hF(0)

1 + γ h/2
. (8.41b)

If the mass m is not equal to unity, the factors 1±γ h/2 are replaced by 1±γ h/(2m).
It is often useful to simulate the system with a prescribed temperature rather

than at constant energy. In Section 8.5 we shall discuss a constant-temperature MD
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method in which a time-dependent friction parameter occurs, obeying a first order
differential equation:

ẍ(t) = −γ (t)ẋ(t)+ F[x(t)] (8.42a)

γ̇ (t) = g[ẋ(t)]. (8.42b)

The solution can conveniently be presented in the leap-frog formulation. As the
momentum is given at half-integer time steps in this formulation, we can solve for
γ in the following way:

γ (h) = γ (0)+ hg[p(h/2)] + O(h2), (8.43)

and this is to be combined with Eqs. (8.41). Velocity-Verlet formulations (Eqs. (8.9))
for equations of motions including friction terms can be found straightforwardly.
This is left as an exercise to the reader – see also Ref. [26].

*8.4.2 Symplectic geometry; symplectic integrators

In recent years, major improvement has been achieved in understanding the merits
of the various methods for integrating equations of motion which can be derived
from a Hamiltonian. This development started in the early 1980s with the observa-
tions made independently by Ruth [27] and Feng [28] that methods for solving
Hamiltonian equations of motion should preserve the geometrical structure of
the continuum solution in phase space. This geometry is the so-called symplectic
geometry. Below we shall explain what this geometry is about, and what the prop-
erties of symplectic integrators are. In Section 8.4.3 we shall see how symplectic
integrators can be constructed. We restrict ourselves again to a two-dimensional
phase space (one particle moving in one dimension) spanned by the coordinates
p and x, but it should be realised that the analysis is trivially generalised to arbit-
rary numbers of particles in higher dimensional space with phase space points
(p1, . . . , pm, r1, . . . , rm).4 The equations of motion for the particle are derived from a
Hamiltonian which for a particle moving in a potential (in the absence of constraints)
reads

H(p, x) = p2

2
+ V(x). (8.44)

The Hamilton equations of motion are then given as

ṗ = −∂H(p, x)

∂x
(8.45a)

ẋ = ∂H(p, x)

∂p
(8.45b)

4 Although we use the notation ri for the coordinates, they may be generalised coordinates.
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It is convenient to introduce the combined momentum–position coordinate z =
(p, x), in terms of which the equations of motion read

ż = J∇H(z) (8.46)

where J is the matrix

J =
(

0 −1
1 0

)
(8.47)

and ∇H(z) = (∂H(z)/∂p, ∂H(z)/∂x).5

Expanding the equation of motion (8.46) to first order, we obtain the time
evolution of the point z to a new point in phase space:

z(t + h) = z(t)+ hJ∇zH[z(t)]. (8.49)

The exact solution of the equations of motion can formally be written as

z(t) = exp(tJ∇zH)[z(0)] (8.50)

where the exponent is to be read as a series expansion of the operator tJ∇zH.
This can be verified by substituting Eq. (8.50) into (8.46). This is a one-parameter
family of mappings with the time t as the continuous parameter. The first order
approximation to (8.50) coincides with (8.49).

Now consider a small region in phase space located at z = (p, x) and spanned by
the infinitesimal vectors δza and δzb. The area δA of this region can be evaluated
as the cross product of δza and δzb which can be rewritten as6

δA = δza × δzb = δza · (Jδzb). (8.51)

It is now easy to see that the mapping (8.50) preserves the area δA. It is sufficient
to show that its time derivative vanishes for t = 0, as for later times the analysis
can be translated to this case. We have

dδA

dt

∣∣∣∣
t=0

= d

dt
{[etJ∇zH(δza)] · [JetJ∇zH(δzb)]}t=0

= [J∇zH(δza)] · (Jδzb)+ (δza) · [JJ∇zH(δzb)]. (8.52)

We can find H(δza,b) using a first order Taylor expansion:

H(δza) = H(z + δza)− H(z) = δza · ∇zH(z), (8.53)

5 In more than one dimension, the vector z is defined as (p1, . . . , pN , x1, . . . , xN ), and the matrix J reads in
that case

J =
(

0 −I
I 0

)
(8.48)

where I is the N × N unit matrix.
6 Note that the area can be negative: it is an oriented area. In the language of differential geometry this area

is called a two-form.
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and similar for H(δzb). This leads to the form

dδA

dt

∣∣∣∣
t=0

= −(LT δza) · (Jδzb)− (δza) · (JLTδzb) (8.54)

where L is the Jacobian matrix of the operator J∇zH:

Lij =
∑

k

Jik[∂2H(z)/∂zk∂zj] =
(−Hpx −Hxx

Hpp Hpx

)
. (8.55)

Here Hxx denotes the second partial derivative with respect to x etcetera. It is easy
to see that the matrix L satisfies

LTJ + JL = 0, (8.56)

where LT is the transpose of L, and hence from (8.54) the area δA is indeed
conserved.

We can now define symplecticity in mathematical terms. The Jacobi matrix S of
the mapping exp(tJ∇H) is given as S = exp(tL). This matrix satisfies the relation:

STJS = J . (8.57)

Matrices satisfying this requirement are called symplectic. They form a Lie group
whose Lie algebra is formed by the matrices L satisfying (8.56). General nonlinear
operators are symplectic if their Jacobi matrix is symplectic.

In more than two dimensions the above analysis can be generalised for any pair
of canonical variables pi, xi – we say that phase space area is conserved for any
pair of one-dimensional conjugate variables pi, xi. The conservation law can be
formulated in an integral form [29]; this is depicted in Figure 8.3. In this picture the
three axes correspond to p, x and t. If we consider the time evolution of the points
lying on a closed loop in the p, x plane, we obtain a tube which represents the flow
in phase space. The area conservation theorem says that any loop around the tube
encloses the same area

∮
pdx. In fact, there exists a similar conservation law for

volumes enclosed by the areas of pairs of canonical variables: these volumes are
called the Poincaré invariants. For the particular case of the volume enclosed by
areas of all the pairs of canonical variables, we recover Liouville’s theorem which
says that the volume in phase space is conserved. Phase space volume conservation
is equivalent to the Jacobi determinant of the time evolution operator in phase space
being equal to 1 (or −1 if the orientation is not preserved). For two-dimensional
matrices, the Jacobi determinant being equal to 1 is equivalent to symplecticity
as can easily be checked from (8.57). This is also obvious from the geometric
representation in Figure 8.3. For systems with a higher-dimensional phase space,
however, the symplectic symmetry is a more detailed requirement than mere phase
space conservation.



220 Molecular dynamics simulations

x

p

t

Figure 8.3. The area conservation law for a symplectic flow. The integral
∮

pdx
for any loop around the tube representing the flow of a closed loop in the p, x
plane remains constant. This integral represents the area of the projection of the
loop onto the xp plane. Note that the loops do not necessarily lie on a plane of
constant time.

We have seen that symplecticity is a symmetry of Hamiltonian mechanics in
continuum time; now we consider numerical integration methods for Hamiltonian
systems (discrete time). As mentioned above, it is not clear whether full sym-
plecticity is necessary for a reliable description of the dynamics of a system by a
numerical integration. However, it will be clear that the preservation of the sym-
metries present in continuum time mechanics is the most reliable option. The fact
mentioned above, that symplecticity implies conservation of the discrete version
of the total energy, is an additional feature in favour of symplectic integrators for
studying dynamical systems.

It should be noted that symplecticity does not guarantee time reversibility or
vice versa. Time reversibility shows up as the Hamiltonian being invariant when
replacing p by −p, and a Hamiltonian containing odd powers of p might still be
symplectic.

*8.4.3 Derivation of symplectic integrators

The first symplectic integrators were found by requiring that an integrator of some
particular form be symplectic. The complexity of the resulting algebraic equations
for the parameters in the integration scheme was found to increase dramatically with
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increasing order of the integrator. Later Yoshida [21] and Forest [22] developed a
different scheme for finding symplectic integrators, and in this section we follow
their analysis.

Consider a Hamiltonian of the simple form:

H = T(p)+ U(x) (8.58)

(we still restrict ourselves to a particle in one dimension – results are easily
generalised). In terms of the variable z = (p, x) the equations of motion read

dz

dt
=
(

−∂H
∂x

,
∂H
∂p

)
=
(

−∂U(x)

∂x
,
∂T(p)

∂p

)

= J∇H(z) ≡ T̃(z)+ Ũ(z), (8.59)

where in the last expression the operator J∇H, which acts on z = (p, x), is split
into the contributions from the kinetic and potential energy respectively:

T̃(z) =
(

0,
∂T(p)

∂p

)
(8.60a)

Ũ(z) =
(

−∂U(x)

∂x
, 0

)
. (8.60b)

T̃ and Ũ are therefore also operators which map a point z = (p, x) in phase space
onto another point in phase space.

As we have seen in the previous section, the exact solution of (8.59) is given as

z(t) = exp(tJ∇H)[z(0)] = exp[t(T̃ + Ũ)][z(0)]. (8.61)

The term exp(tJ∇H) is a time evolution operator. It is a symplectic operator, as
are exp(tT̂) and exp(tÛ) since these can both be derived from a Hamiltonian (for
a free particle and a particle with infinite mass respectively).

An nth order integrator for time step h is now defined by a set of numbers ak , bk ,
k = 1, . . . , m, such that

m∏
k=1

exp(akhT̃) exp(bkhŨ) = exp(hJ∇H)+ O(hn+1). (8.62)

Since the operators exp(akhT̃) and exp(bkhŨ) are symplectic, the integrator (8.62)
is symplectic too. The difference between the integrator and the exact evolution
operator can be expressed in Campbell–Baker–Hausdorff (CBH) commutators: if
eC = eAeB then

C = A + B + [A, B]/2 + ([A, [A, B]] + [B, [B, A]])/12 + · · · (8.63)

where the dots represent higher order commutators. This formula can be derived
by writing exp(tA) exp(tB) = exp[t(A + B) + �], expanding the operator � in
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powers of t and equating equal powers of t on the left and right hand sides of the
equality [30]. Applying this formula with A = hT̃ and B = hŨ to increasing orders
of commutators, we find

exp(hJ∇H) = exp(hT̃) exp(hŨ)+ O(h2) (8.64a)

exp(hJ∇H) = exp(hT̃/2) exp(hŨ) exp(hT̃/2)+ O(h3) (8.64b)

etc.,

but the extra terms are often tedious to find. As T̃ and Ũ appear in the exponent,
these expressions do not seem very useful. However, as it follows directly from
Eq. (8.60) that applying T̃ and Ũ more than once gives zero, we have simply

exp(ahT̃) = 1 + ahT̃ (8.65)

and similarly for exp(bhŨ). Therefore, the first order integrator is

p(t + h) = p(t)− h{∂U[x(t)]/∂x}; (8.66a)

x(t + h) = x(t)+ h{∂T [p(t + h)]/∂p} (8.66b)

which is recognised as the Verlet algorithm (although with a less accurate definition
of the momentum).

The second order integrator is given by

p(t + h/2) = p(t)− h{∂Ũ[x(t)]/∂x}/2; (8.67a)

x(t + h) = x(t)+ h{∂T̃ [p(t + h/2)]/∂p}; (8.67b)

p(t + h) = p(t + h/2)− h{∂Ũ[x(t + h)]/∂x}/2. (8.67c)

Applying this algorithm successively, the first and third step can be merged into one,
and we obtain precisely the Verlet algorithm in leap-frog form with a third order
error in the time step h. This error seems puzzling since we know that the Verlet
algorithm gives positions with an error of order h4 and momenta with an error of
order h2. The solution to this paradox lies in the interpretation of the variable p.
If at time t, p(t) is the continuous time derivative of the continuum solution x(t),
the above algorithm gives us x(t + h) and p(t + h) both with error h3. If however
p(t) is defined as [x(t + h) − x(t − h)]/(2h), the algorithm is equivalent to the
velocity-Verlet algorithm and hence gives the positions x(t + h) with an error of
order h4 and p(t + h) is according to its definition given with a h2 error. The way
in which initial conditions are given defines which case we are in.

Finding higher order algorithms is nontrivial as we do not know the form of
the higher order expansion terms of the operators exp(hT̃) and exp(hŨ). However,
Yoshida [21] proposed writing the fourth order integrator in the following form:

S2(αh)S2(βh)S2(αh) (8.68)
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where S2 is the second order integrator, and he fixed α and β by the requirement that
the resulting expression is equal to the continuum operator to fourth order. Higher
order integrators were found similarly. The general result can be written as

for k = 1 to n do

x(k) = x(k−1) − hak∂T [p(k−1)]/∂p (8.69)

p(k) = p(k−1) − hbk∂U[x(k)]/∂x

end

and the numbers ak and bk can be found in Yoshida’s paper. For the fourth order
case, they read

a1 = a4 = 1/[2(2 − 21/3)]; a2 = a3 = (1 − 21/3)a1 (8.70a)

b1 = b3 = 2a2; b2 = −21/3b1; b4 = 0. (8.70b)

From Yoshida’s derivation it follows that there exists a conserved quantity which
acts as the analog of the energy. The integrator is certainly not the same as the exact
time evolution operator, but it deviates from the latter only by a small amount.
Writing the integrator S(h) as

S(h) = exp(hAD) (8.71)

we have a new operator AD which deviates from the continuum operator A only by
an amount of order hn+1, as the difference can be written as a sum of higher order
CBH commutators. It will be shown in Problem 8.9 that for an operator of the form
exp(tAD) which is symplectic for all t, there exists a Hamiltonian HD which is the
analogue of the Hamiltonian in the continuum time evolution. This means that, if
we know HD (which is usually impossible to find, except for the trivial case of the
harmonic oscillator), we could either use the integrator (8.71) to give us the image
at time h, or the continuum solution of the dynamical system with Hamiltonian HD

for t = h: both mappings would give identical results. The Hamiltonian HD(z) is
therefore a conserved quantity of the integrator, and it differs from the energy by an
amount of order hn+1. The existence of such a conserved quantity is also discussed
in Refs. [17, 18, 31].

8.5 Molecular dynamics methods for different ensembles

8.5.1 Constant temperature

In experimental situations the total energy is often not a control variable as usually
the temperature of the system is kept constant. We know that in the infinite system
the temperature is proportional to the average kinetic energy per degree of freedom
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with proportionality constant kB/2, and therefore this quantity is used in MD to
calculate the temperature, even though the system is finite (see Section 10.7 for a
discussion on temperature for a finite system). As the total energy remains con-
stant in the straightforward implementation of the molecular dynamics paradigm
as presented in the previous sections, the question arises how we can perform MD
simulations at constant temperature or pressure. We start with a brief overview
of the various techniques which have been developed for keeping the temperature
constant. Then we shall discuss the most successful one, the Nosé–Hoover method,
in greater detail.

Overview of constant temperature methods

Experience from real life is a useful guide to understanding procedures for keeping
the temperature at a constant value. In real systems, the temperature is usually
kept constant by letting the system under consideration exchange heat with a much
larger system in equilibrium – the heat bath. The latter has a definite temperature
(it is in equilibrium) and the smaller system that we consider will assume the
same temperature, as it has a negligible influence on the heat bath. Microscopically
the heat exchange takes place through collisions of the particles in the system
with the particles of the wall that separates the system from the heat bath. If, for
example, the temperature of the heat bath is much higher than that of the system
under consideration, the system particles will on average increase their kinetic
energy considerably in each such collision. Through collisions with their partners
in the system, the extra kinetic energy spreads through the system, and this process
continues until the system has attained the temperature of the heat bath.

In a simulation we must therefore allow for heat flow from and to the system in
order to keep it at the desired temperature. Ideally, such a heat exchange leads to a
distribution ρ of configurations according to the canonical ensemble, irrespective
of the number of particles:

ρ(R, P) = e−H(R,P)/(kBT), (8.72)

but some of the methods described below yield distributions differing from this by
a correction of order 1/Nk , k > 0. In comparison with the experimental situation,
we are not confined to allowing heat exchange only with particles at the boundary:
any particle in the system can be coupled to the heat bath.

Several canonical MD methods have been developed in the past. In 1980
Andersen [32] devised a method in which the temperature is kept constant by
replacing every so often the velocity of a randomly chosen particle by a velocity
drawn from a Maxwell distribution with the desired temperature. This method is
closest to the experimental situation: the velocity alterations mimic particle col-
lisions with the walls. The rate at which particles should undergo these changes
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in velocity influences the equilibration time and the kinetic energy fluctuations.
If the rate is high, equilibration will proceed quickly, but as the velocity updates
are uncorrelated, they will destroy the long time tail of the velocity autocorrela-
tion function. Moreover, the system will then essentially perform a random walk
through phase space, which means that it moves relatively slowly. If on the other
hand the rate is low, the equilibration will be very slow. The rate Rcollisions for which
wall collisions are best mimicked by Andersen’s procedure is of the order of

Rcollisions ∼ κ

kBn1/3N2/3
(8.73)

where κ is the thermal conductivity of the system, and n, N the particle density and
number respectively [32] (see Problem 8.9). Andersen’s method leads to a canonical
distribution for all N . The proof of this statement needs some theory concerning
Markov chains and is therefore postponed to Section 15.4.3, where we consider the
application of this method to lattice field theories.

For evaluating equilibrium expectation values for time- and momentum-
independent quantities, the full canonical distribution (8.72) is not required: a
canonical distribution in the positional coordinates

ρ(R) = e−U(R)/(kBT) (8.74)

is sufficient since the momentum part can be integrated out for momentum-
independent expectation values. For a sufficiently large system the total kinetic
energy of a canonical system will evolve towards its equilibrium value 3NkBT/2
and fluctuations around this value are very small. We might therefore force the
kinetic energy to have a value exactly equal to the one corresponding to the desired
temperature. This means that we replace the narrow distribution of the kinetic
energy by a delta-function

ρ(Ekin) → δ[Ekin − 3(N − 1)kBT/2]. (8.75)

The simplest way of achieving this is by applying a simple velocity rescaling pro-
cedure as described in the previous section (Eqs. (8.14) and (8.15)) after every
integration step rather than occasionally:

pi → pi

√
3/2(N − 1)kBT

Ekin
. (8.76)

This method can also be derived by imposing a constant kinetic energy via a Lag-
range multiplier term added to the Lagrangian of the isolated system [33]. It turns
out [34] that this velocity rescaling procedure induces deviations from the canonical
distribution of order 1/

√
N , where N is the number of particles.

Apart from the rescaling method, which is rather ad hoc, there have been attempts
to introduce the coupling via an extra force acting on the particles with the purpose
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of keeping the temperature constant. This force assumes the form of a friction
proportional to the velocity of the particles, as this is the most direct way to affect
velocities and hence the kinetic energy:

mr̈i = Fi(R)− ζ(R, Ṙ)ṙi. (8.77)

The parameter ζ acts as a friction parameter which is the same for all particles and
which will be negative if heat is to be added and positive if heat must be drained
from the system. Various forms for ζ have been used, and as a first example we
consider [33, 35]

ζ(R, Ṙ) = dV(R)/dt∑
i ṙ2

i

. (8.78)

This force keeps the kinetic energy K = m
∑

i v2
i /2 constant as can be seen using

(8.77). From this equation, we obtain

∂K

∂ t
∝
∑

i

viv̇i = −
∑

i

vi[∇iV(R)− ζ(R, Ṙ)vi] = dV

dt
−
∑

i

ṙ2
i ζ(R, Ṙ) = 0.

(8.79)
It can be shown [34] that for finite systems the resulting distribution is purely
canonical (without 1/Nk corrections) in the restricted sense, i.e. in the coordinate
part only.

Another form of the friction parameter ζ was proposed by Berendsen et al.
[36] This now has the form ζ = γ (1 − TD/T) with constant γ , T is the actual
temperature T = ∑

i mv2
i /(3kB), and TD is the desired temperature. It can be

shown that the temperature decays to the desired temperature exponentially with
time at rate given by the coefficient γ . However, this method is not time reversible;
moreover, it can be shown that the Nosé method (see below) is the only method
with a single friction parameter which gives a full canonical distribution [37], so
Berendsen’s method cannot have this property. Berendsen’s method can be related
to a Langevin description of thermal coupling, in the sense that the time evolution
of the temperature for a Langevin system (see Section 8.8) can be shown to be
equivalent to that of a system with a coupling via ζ as given by Berendsen.

Nosé’s method in the formulation by Hoover [37] uses yet another friction
parameter ζ which is now determined by a differential equation:

dζ

dt
=
(∑

i

v2
i − 3NkBTD

)
/Q (8.80)

where Q is a parameter which has to be chosen with some care (see below) [38].
This way of keeping the temperature constant yields the canonical distribution for
positions and momenta, as will be shown in the next subsection.

The Nosé and the Andersen methods yield precise canonical distributions for pos-
ition and momentum coordinates. They still have important disadvantages, however.
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In the Andersen method, it is not always clear at which rate the velocities are to be
altered and it has been found [39, 40] that the temperature sometimes levels down
at the wrong value. The Nosé–Hoover thermostat suffers from similar problems.
In this method, the coupling constant Q in Eq. (8.80) between the heat bath and
the system must be chosen – this coupling constant is the analogue of the velocity
alteration rate in the Andersen method. It turns out [38] that for a Lennard–Jones
fluid at high temperatures, the canonical distribution comes out well, but if the tem-
perature is lowered [26], the temperature starts oscillating with an amplitude much
larger than the standard deviation expected in the canonical ensemble. It can also
occur that such oscillations are much smaller than the expected standard deviation,
but in this case the fluctuations on top of this oscillatory behaviour are much smal-
ler than in the canonical ensemble. Martyna et al. [41] have devised a variant of
the Nosé–Hoover thermostat which is believed to alleviate these problems to some
extent. Although the difficulties with these constant temperature approaches are
very serious, they have received rather little attention to date. It should be clear that
it must always be checked explicitly whether the temperature shows unusual beha-
viour; in particular, it should not exhibit systematic oscillations, and the standard
deviation for N particles in D dimensions should satisfy

�T =
√

2

ND
T (8.81)

where�T is the width of the temperature distribution and T is the mean value [26].
This equation follows directly from the Boltzmann distribution.

*Derivation of the Nosé–Hoover thermostat

In this section we shall discuss Nosé’s approach [34, 42], in which the heat bath is
explicitly introduced into the system in the form of a single degree of freedom s.
The Hamiltonian of the total (extended) system is given as

H(P, R, ps, s) =
∑

i

p2
i

2ms2
+ 1

2

∑
ij,i �=j

U(ri − rj)+ p2
s

2Q
+ gkT ln(s). (8.82)

g is the number of independent momentum-degrees of freedom of the system (see
below), and R and P represent all the coordinates ri and pi as usual. The physical
quantities R, P and t (time) are virtual variables – they are related to real variables
R′, P′ and t′ via R′ = R, P′ = P/s and t′ = ∫ t dτ/s. With these definitions we have
for the real variables P′ = dQ′/dt′.
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First we derive the equations of motion in the usual way:

dri

dt
= ∂H
∂pi

= pi

ms2
(8.83a)

ds

dt
= ∂H
∂ps

= ps

Q
(8.83b)

dpi

dt
= −∂H

∂ri
= −∇iU(R) = −

∑
i<j

∇iU(ri − rj) (8.83c)

dps

dt
= −∂H

∂s
=
(∑

i p2
i

ms2 − gkBT

)/
s. (8.83d)

We have used the notation ∂H/∂pi = ∇piH, etc. The partition function of the total
system (i.e. including heat bath degree of freedom s) is given by the expression:

Z = 1

N !
∫

dps

∫
ds
∫

dP
∫

dR

× δ


∑

i

p2
i

2ms2 + 1

2

∑
ij,i �=j

U(rij)+ p2
s

2Q
+ gkBT ln(s)− E


 . (8.84)

Integrations
∫

dR and
∫

dP are over all position and momentum degrees of freedom.
We now rescale the momenta pi:

pi

s
= p′

i, (8.85)

so that we can rewrite the partition function as

Z = 1

N !
∫

dps

∫
ds
∫

dP′
∫

dR

× s3Nδ


∑

i

p′2
i

2m
+ 1

2

∑
ij,i �=j

U(rij)+ p2
s

2Q
+ gkBT ln(s)− E


 . (8.86)

We define the Hamiltonian H0 in terms of R and P′ as

H0 =
∑

i

p′2
i

2m
+ 1

2

∑
ij,i �=j

U(rij). (8.87)
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Furthermore we use the relation δ[f (s)] = δ(s − s0)/f ′(s) with f (s0) = 0 and set
g = 3N + 1, so that we can rewrite Eq. (8.86) as

Z = 1

N !
∫

dps

∫
ds
∫

dP′
∫

dR
s3N+1

(3N + 1)kBT

× δ

(
s − exp

[
−H0(P′, R)+ p2

s /2Q − E

(3N + 1)kBT

])

= 1

(3N + 1)kBT

1

N !
∫

dps

∫
dP′

∫
dR exp

[
−H0(P′, R)+ p2

s/2Q − E

kBT

]
.

(8.88)

The dependence on ps is simply Gaussian and integrating over this coordinate we
obtain

Z = 1

3N + 1

(
2πQ

kBT

)1/2

exp(E/kBT)Zc (8.89)

where Zc is the canonical partition function:

Zc = 1

N !
∫

dP′
∫

dR exp[−H0(P
′, R)/kBT ]. (8.90)

It follows that the expectation value of a quantity A which depends on R and P is
given by

〈A(P/s, R)〉 = 〈A(P′, R)〉c (8.91)

where 〈· · ·〉c denotes an average in the canonical ensemble. The ergodic hypothesis
relates this ensemble average to a virtual-time average.

The Lagrangian equations of motion for the ri can be obtained by eliminating
the momenta from (8.83a):

d2ri

dt2 = − 1

ms2 ∇iV(R)− 2

s

dri

dt

ds

dt
. (8.92)

In this equation the ordinary force term is recognised with a factor 1/s2 in front
and with an additional friction term describing the coupling to the heat bath. The
factor 1/s2 is consistent with the relation between real and virtual-time dt′ = dt/s
given above. Together with the definitions P′ = P/s and p′

s = ps/s, this leads to
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the equations of motion in real variables:

dr′
i

dt′ = p′
i

m
(8.93a)

dp′
i

dt′
= −∇iV(R)− sp′

sp
′
i/Q (8.93b)

ds

dt′
= s′2p′

s/Q (8.93c)

dp′
s

dt′
=
(∑

i

p
′2
i /m − gkBT

)
/s − s2p

′2
s /Q. (8.93d)

Although these equations are equivalent to the equations for the virtual variables,
there is a slight complication in the evaluation of averages. The point is that we
have used the ergodic theorem for the canonical Hamiltonian expressed in virtual
variables (P, R, t, s, ps) in order to relate virtual-time averages to ensemble averages.
The real time steps however are not equidistant and time averaging in real time is
therefore not equivalent to averaging in virtual-time. Fortunately the two can be
related. Expressing the real time t′ as an integral over virtual-time τ according to
t′ = ∫ t

0 dτ/s we obtain

lim
t′→∞

1

t′

∫ t′

0
A(P/s, R)dτ ′ = lim

t′→∞
t

t′
1

t

∫ t

0
A(P/s, R)dτ/s

=
[

lim
t′→∞

1

t

∫ t

0
A(P/s, R)dτ/s

]/(
lim

t′→∞
1

t

∫ t

0
dτ/s

)

= 〈A(P/s, R)/s〉/〈1/s〉. (8.94)

It can be verified (see Problem 8.9) that the latter expression coincides with the
canonical ensemble average if we put g equal to 3N instead of 3N + 1. This means
that if we carry out the simulation using Eqs. (8.93) with g = 3N , real-time averages
are equivalent to canonical averages.

Hoover [37] showed that by defining ζ = sp′
s/Q, Eqs. (8.93) can be reduced to

the simpler form

dr′
i

dt′ = p′
i

m
;

dp′
i

dt′ = Fi − ζp′
i; (8.95)

dζ

dt′
=
(∑

i p′2
i

m
− gkBT

)
/Q, (8.96)

and taking g equal to the number of degrees of freedom, i.e. 3N , he was able to show
that the distribution f (P, R, ζ ) is phase space conserving, i.e. it satisfies Liouville’s
equation.



8.5 Molecular dynamics methods for different ensembles 231

The disadvantage of the real-time equations is that they are not Hamiltonian, in
the sense that they cannot be derived from a Hamiltonian. Although this might not
seem to be a problem, we prefer Hamiltonian equations of motion as they allow
for stable (symplectic) integration methods as discussed in Section 8.4. Winkler
et al. [43] have formulated canonical equations of motion in real-time but these are
subject to severe numerical problems when integrating the equations of motion for
large systems.

8.5.2 Keeping the pressure constant

In experimental situations not only the temperature is kept under control but also
the pressure. The partition function for the (NpT)-ensemble is given as

Q(N , p, T) =
∫

dV e−βpV 1

N !
∫

dR dP e−βH(R,P) =
∫

dV e−βpV Zc(N , V , T)

(8.97)
(see Chapter 7). We use a lower-case p for the pressure in order to avoid confusion
with the total momentum coordinate P. We now describe the scheme which is
commonly adopted for keeping the pressure constant but do not go into too much
detail as the analysis follows the same lines as the Nosé–Hoover thermostat, and
refer to the literature for details [32, 34, 37].

Andersen first presented this scheme. He proposed incorporating the volume into
the equations of motion as a dynamical variable and scaled the spatial coordinates
back to a unit volume:

r′
i = riV

1/3, (8.98)

where again the prime denotes the real coordinate – unprimed coordinates are those
of the virtual system. Moreover

p′
i = pi/(sV1/3). (8.99)

The canonical Hamiltonian is extended by two variables, the volume V and the
canonical momentum pV which can be thought of as the momentum of a piston
closing the system.7 The Hamiltonian has an extra ‘potential energy’ term pV and
a ‘kinetic’ term p2

V/2W (W is the ‘mass’ of the piston, and pV its momentum):

H(P, R, ps, s, pV , V) =
∑

i

p2
i

2mV2/3s2 + 1

2

∑
ij,i �=j

U[V1/3R]

+ p2
s

2Q
+ gkT ln(s)+ pV + p2

V/2W . (8.100)

7 Note that the system expands and contracts isotropically, so instead of a piston, the whole system boundary
moves.
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The equations of motion now read:

dr
dt

= ∂H
∂pi

= pi

mV2/3s2
(8.101a)

ds

dt
= ∂H
∂ps

= ps

Q
(8.101b)

dpi

dt
= −∂H

∂ri
= −∇iU(V

1/3R) (8.101c)

dps

dt
= −∂H

∂s
=
( ∑

i p2
i

mV2/3s2
− gkBT

)
/s (8.101d)

dV

dt
= ∂H
∂pV

= pV

W
(8.101e)

dpV

dt
= −∂H

∂V
=
( ∑

i p2
i

mV2/3s2 −
∑

i

∇iU(V
1/3R) · ri

)
/(3V)− p. (8.101f)

It can be shown in the same way as in the thermostat case that the distribution of
configurations corresponds to that of the (NpT) ensemble:

ρ(P′, R′, V) = VN exp{−[H0(P
′, R′)+ pV ]/kBT}. (8.102)

Hoover [37] proposed similar equations of motion which conserve phase space, but
they differ from this distribution by an extra factor V in front of the exponent [44].

The method described is restricted to isotropic volume changes and can therefore
not be used for studying structural phase transitions in solids. A method which
allows for anisotropic volume changes while keeping the pressure constant was
developed by Parrinello and Rahman [45].

8.6 Molecular systems

8.6.1 Molecular degrees of freedom

Interactions in molecular systems can be divided into intramolecular and inter-
molecular ones. The latter are often taken to be atom-pair interactions similar to
those considered in the previous sections. The intramolecular interactions (i.e. the
interactions between the atoms of one molecule) are determined by chemical bonds,
so not only are they strong compared with the intermolecular interactions (between
atoms of different molecules) but they also include orientational dependencies. We
now briefly describe the intramolecular degrees of freedom and interactions (see
also Figure 8.4).

First of all, the chemical bonds can stretch. The interaction associated with this
degree of freedom is usually described in the form of a harmonic potential for the
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stretch

torsion

bend

Figure 8.4. Different types of motion of atoms within a molecule.

bond length l:
Vstretch(l) = 1

2αS(l − l0)
2 (8.103)

where l0 is the equilibrium bond length.
Now consider three atoms bonded in a chain-like configuration A–B–C. This

chain is characterised by a bending or valence angle ϕ which varies around an
equilibrium value ϕ0 and the potential is described in terms of a cosine:

Vvalence(ϕ) = −αB[cos(ϕ − ϕ0)+ cos(ϕ + ϕ0)] (8.104)

where the equivalence of the angles ϕ0 and −ϕ0 is taken into account. Often, a
harmonic approximation cos(ϕ) ≈ 1 − ϕ2/2, valid for small angles, is used.

Finally there is an interaction associated with chain configurations of four atoms
A–B–C–D. The plane through the first three atoms A, B, C does not coincide in
general with that through B, C and D. The torsion interaction is similar to the bend
interaction, but the angle (called dihedral angle), denoted byϑ , is now that between
these two planes:

Vtorsion(ϑ) = −αT[cos(ϑ − ϑ0)+ cos(ϑ + ϑ0)]. (8.105)

This interaction is also often replaced by its harmonic approximation. Other inter-
actions and more complicated forms of these potentials can be used – we have only
listed the simplest ones.

Characteristic vibrations associated with the different degrees of freedom dis-
tinguished here can be derived from the harmonic interactions – the frequencies
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vary as the square root of the α-coefficients. In general, the bond length vibrations
are the most rapid, followed by the bending vibrations. For an MD integration to
be accurate, the time step should be chosen smaller than the fastest degree of free-
dom. But as this degree of freedom will vibrate with a small amplitude, because
of the strong potential, we are using most of the computer time for those parts of
the motion that are not expected to contribute strongly to the physical properties
of the system. Moreover, if there is a clear separation between the time scales of
the various degrees of freedom of the system, energy transfer between the fast and
slow modes is extremely slow, so that it is difficult, if not impossible, to reach
equilibrium within a reasonable amount of time. In such a case it is advisable to
‘freeze’ the fast modes by keeping them rigorously fixed in time. In practice this
means that lengths of chemical bonds can safely be kept fixed, and perhaps some
bending angles. In a more approximate description it is also possible to consider
entire molecules as being rigid. In the next subsections we shall describe how to
deal with rigid and partly rigid molecules.

8.6.2 Rigid molecules

We consider molecules which can be treated as rigid bodies whose motion consists
of translations of the centre of mass and rotations around this point. The forces acting
between two rigid molecules are usually composed of atomic pair interactions
between atoms belonging to the two different molecules.8 The total force acting
on a molecule determines the translational motion and the torque determines the
rotational motion. In the next subsection, we shall describe a direct formulation of
the equations of motion of a simple rigid molecule – the nitrogen molecule. In the
following subsection we shall then describe a different approach in which rigidity
is enforced through constraints added to the Lagrangian.

Direct approach for the rigid nitrogen molecule

As a simple example consider the nitrogen molecule, N2. This consists of two nitro-
gen atoms, each of mass m ≈ 14 atomic mass units (a.m.u.) and whose separation
d is kept fixed in the rigid approximation. The coordinates of the molecule are the
three coordinates of the centre of mass and the two coordinates defining its orient-
ation. The latter can be polar angles but here we shall characterise the orientation
of the molecule by a unit direction vector n̂, pointing from atom 1 to atom 2 (see
Figure 8.5).

The motion of the centre of mass of the molecule is determined by the total force
Ftot acting on a particular molecule. This force is the sum of all the forces between

8 Sometimes, off-centre interactions (i.e. not centred on the atomic positions) are taken into account too but
we shall not consider these.
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ω

n̂

Figure 8.5. The nitrogen molecule. n̂ is a unit vector, ωωω is the rotation vector.

each of the two atoms in the molecule and the atoms of the remaining molecules. The
atomic forces can be modelled by a Lennard–Jones interaction with the appropriate
atomic nitrogen parameters σ = 3.31 Å, ε/kB = 37.3 K and d = 0.3296σ [46].
The equation of motion for the centre of mass RCM is then

R̈CM = Ftot, (8.106)

which can be solved in exactly the same way as in an ordinary MD simulation.
The motion of the orientation vector n̂ is determined by the torque N with respect

to the centre of the molecule, which is given in terms of the forces F(1) and F(2)

acting on atoms 1 and 2 respectively:

N = (d/2)n̂ × (F(1) − F(2)). (8.107)

The torque changes the angular momentum L of the molecule. This is equal to
Iωωω, where I is the moment of inertia md2/2 and ωωω is the angular frequency vector
whose norm is the angular frequency and whose direction is the axis around which
the rotation takes place (see Figure 8.5). Note that N is not necessarily parallel to
ωωω. The equation of motion for the angular momentum is L̇ = N or

Iω̇ωω = N . (8.108)

The angular frequency ωωω is in turn related to the time derivative of the direction
vector n̂:

˙̂n = ωωω × n̂. (8.109)

Combining Eqs. (8.108) and (8.109) leads to

˙̂n = ωωω × (ωωω × n̂)+ N × n̂/I = −ω2n̂ + N × n̂/I . (8.110)

This equation of motion leaves the norm of the direction vector n̂ invariant, as
it should – this follows directly from (8.109). In a numerical integration of the
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equations of motion the norm of n̂ is not rigorously conserved; it can suffer from
numerical errors which may growing steadily with time. We shall now see how this
can be avoided.

Let us write down the leap-frog algorithm for the equation of motion (8.110)
for n̂:

p(t + h/2) = p(t − h/2)+ h[−ω2n̂(t)+ N (t)× n̂(t)/I] (8.111a)

n̂(t + h) = n̂(t)+ hp(t + h/2). (8.111b)

Here p represents the time-derivative of n̂ at times t = (n + 1/2)h. The problem
with this algorithm is that it depends on ω2 and this depends in turn on the time
derivative ˙̂n. A convenient way of finding ω2 is to use

p(t − h/2) = p(t)− h

2
(−ω2n̂ + N × n̂/I)+ O(h2), (8.112)

so that, using n̂(t) · p(t) = 0, we obtain

2p(t − h/2) · n̂(t) = hω2 + O(h2). (8.113)

Calling the left hand side of this equation λ, we have [2, 47]

λ = 2p(t − h/2) · n̂ (8.114a)

p(t + h/2) = p(t − h/2)+ h[n̂(t)× N (t)/I − λn̂(t)] (8.114b)

n̂(t + h) = n̂(t)+ hp(t + h/2). (8.114c)

The continuum equations of motion guaranteed conservation of the norm of the unit
vector n̂. The leap-frog algorithm will enforce this normalisation only up to an error
of h3. It is therefore sensible to normalise n̂ after every time step – the parameter
λ can then be viewed as the Lagrange multiplier associated with the constraint
|n̂|2 = 1. In the next section we shall discuss a simpler method for simulating
liquid nitrogen, using constraints in a different way.

For general molecules, we have an extra degree of freedom: the angle of rotation
around a molecular axis. This is the third Euler angle, which is usually denoted as
γ . The straightforward procedure for solving the equations of motion is to calculate
the principal angular velocityωωω in terms of the time derivatives of the Euler angles.
The Euler equation of motion gives the rate of change inωωω in terms of the torque. The
time derivatives of the Euler angles can then be found again fromωωω, and these can
be used to calculate the new atomic positions. There is however a problem when the
Euler angle θ = 0, as in that case the transformation fromωωω to the time derivatives
of the Euler angles becomes singular. Evans has discussed this problem and has
presented methods to avoid the instability resulting from this singularity [48]. The
most efficient one is to use the quaternion representation, in which the orientation
of the molecule is defined in terms of a four-dimensional unit vector rather than
three Euler angles. This method was implemented by Evans and Murad [49].
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Enforcing rigidity via constraints

Another method for treating rigid molecules is by imposing holonomic constraints,
i.e. constraints which depend only on positions and not on the velocities, through
an extension of the Lagrangian. The Lagrangian of the system without constraints
reads

L0(R, Ṙ) =
∫ t1

t0
dt
[∑

i

mi

2
ṙ2

i − 1

2

∑
i �=j

U(ri − rj)
]
. (8.115)

A constraint is introduced as usual through a Lagrange multiplier λ [50]. As the
constraint under consideration should hold for all times,λ is a function of t. A simple
example of a constraint is the following: particles 1 and 2 have a fixed separation d
for all times (this could be the separation of the two atoms in a nitrogen molecule).
Such a constraint on the separation is called bond constraint – it can formally be
written as

σ [R(t)] = [r1(t)− r2(t)]2 − d2 = 0. (8.116)

The Lagrangian for the system with this constraint reads

L(R, Ṙ) = L0(R, Ṙ)−
∫ t1

t0
dt λ(t){[r1(t)− r2(t)]2 − d2}. (8.117)

The integral over time is needed because the constraint holds for all times between
t0 and t1. The equations of motion are the Euler–Lagrange equations for this
Lagrangian. These equations will depend on the Lagrange parameters,λ, whose val-
ues are determined by the requirement that the solution must satisfy the constraint.

A slightly more complicated example is the trimer molecule CS2 [51]. The linear
geometry of this molecule is in principle imposed automatically by the correct bond
constraints between the three pairs of atoms. However, the motion of this molecule
is described by five positional degrees of freedom: two to define the orientation of
the molecule and three for the centre of mass position. The three atoms without
constraints have nine degrees of freedom and if three of these are eliminated using
the bond constraints, we are left with six degrees of freedom instead of the five
required. Therefore one redundant degree of freedom is included in this procedure,
which is obviously inefficient. A better procedure is therefore to fix only the distance
between the two sulphur atoms:

|rS(1) − rS(2) |2 = d2 (8.118)

and to fix the position of the C-atom by a linear vector constraint:

(rS(1) + rS(2) )/2 − rC = 0, (8.119)

adding up to the four constraints required.
For a molecule, in general a number of atoms forming a ‘backbone’ set is identi-

fied and these are fixed by bond constraints (the two sulphur atoms in our example)
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and the remaining ones are fixed by linear constraints of the form (8.119). In the case
of a planar structure we take three noncollinear atoms as a backbone. These atoms
satisfy three bond constraints and the remaining atoms are constrained linearly. In
a three-dimensional molecular structure, four backbone atoms are subject to six
bond constraints and the remaining ones to a linear vector constraint each. In the
constraint procedure, the degrees of freedom of the nonbackbone atoms are elim-
inated so that the forces they feel are transferred to the backbone. This elimination
is always possible for linear constraints such as those obeyed by the nonbackbone
atoms.

Let us now return to our CS2 example. First we write down the equations of
motion for all three atoms, following from the extended Lagrangian (the Lagrange
parameter for the bond constraint is called λ, that of the linear vector constraintµµµ):

mSr̈S(1) = F1 − 2λ(rS(1) − rS(2))−µµµ/2 (8.120a)

mSr̈S(2) = F2 + 2λ(rS(1) − rS(2) )−µµµ/2 (8.120b)

mCr̈C = FC +µµµ. (8.120c)

The linear constraint (8.119) is now differentiated twice with respect to time, and
using the equations of motion we obtain

FC +µµµ = mC

2mS
(F1 + F2 −µµµ). (8.121)

We can thus eliminate µµµ in the equations of motion for the S-atoms and obtain,
with M = 2mS + mC:

mSr̈S(1) =
(

1 − mC

2M

)
F1 − mC

2M
F2 + mS

M
FC − 2λ(rS(1) − rS(2)); (8.122a)

mSr̈S(2) =
(

1 − mC

2M

)
F2 − mC

2M
F1 + mS

M
FC + 2λ(rS(1) − rS(2)). (8.122b)

These equations define the algorithm for the positions of the S-atoms, and the
position of the C-atom is fixed at any time by the linear constraint.

Note that we still have an unknown parameterλ present in the resulting equations:
this parameter is fixed by demanding that the bond constraint must hold for rS(1)

and rS(2) at all times (note that we have not yet used this constraint). It is not easy
to eliminate λ from the equations of motion as we have done with µµµ, as the bond
length constraint is quadratic. Instead, we solve for λ at each time step using the
constraint equation. We outline this procedure for our example. Suppose we have
the positions rS(1) and rS(2) at times t and t −h and that for both these time instances
the bond constraint is satisfied. According to the equations of motion (8.122) in the
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Verlet scheme, predictions for the positions at t + h are given by

rS(1) (t + h) = 2rS(1) (t)− rS(1)(t − h)+ h2
(

1 − mC

M

)
F1(t)

− h2 mC

M
F2 + h2 mS

M
FC(t)− 2h2λ(t)[rS(1)(t)− rS(2) (t)]; (8.123a)

rS(2) (t + h) = 2rS(2)(t)− rS(2)(t − h)+ h2
(

1 − mC

M

)
F2(t)

− h2 mC

M
F1 + h2 mS

M
FC(t)+ 2h2λ(t)[rS(1) (t)− rS(2)(t)]. (8.123b)

The predictions for the positions at t+h are linear functions of λ and if we substitute
them into the bond constraint (8.118), we obtain a quadratic equation for λ which
can be solved trivially. Of the two solutions, we keep the smallest value of λ. This
means that the bond constraint is now satisfied to computer precision for all times.
It should be noted that the value of λ in this procedure will deviate slightly from its
value in the exact solution of the continuum case, but the deviation remains within
the overall order h4 error of the integration scheme [52].

We have given the CS2 example here because it illustrates the general procedure
involving linear constraints which are all eliminated from the equations of motion,
thereby reducing the degrees of freedom to those of the backbone atoms (the two
sulphur atoms in our example). These are confined by quadratic bond constraints.
The Lagrange multipliers associated with the latter are kept in the problem and
fixed by the bond constraints themselves. After solving for the backbone, the linear
constraints fix the positions of the remaining atoms uniquely.

The nitrogen molecule which was discussed in the previous subsection using a
direct approach can be treated with the method of constraints. It is a simple problem
because there are no linear constraints which have to be used to remove redundant
degrees of freedom from the equations of motion, and we are left with the following
equations:

m1r̈1 = F1 + λ(r1 − r2) (8.124a)

m2r̈2 = F2 − λ(r1 − r2). (8.124b)

The Verlet equations lead again to linear predictions for r1 and r2 at the next time
step and substituting these into the bond constraint leads to a quadratic equation
which fixes the Lagrange multiplier λ. For an implementation, see Problem 8.9.

8.6.3 General procedure: partial constraints

In the previous section we have considered systems consisting of completely rigid
molecules. Now we discuss partially rigid molecules, consisting of rigid fragments
which can move with respect to each other. The motion of two fragments attached
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by chemical bonds can be described in terms of stretching, bending and torsion, as
described in Section 8.6.2. In general, partial constraints cannot be treated using
the methods given previously. Trying to use the constraints to reduce the equa-
tions to a smaller set and formulating equations for the rigid fragments in terms of
quaternions is quite complicated. Ryckaert et al. [51–54] devised a simple and effi-
cient iterative method for treating arbitrary constraints which is now still the most
important method for MD with polyatomic molecules. Analogous to the method
of constraints for rigid molecules, the rigidity of the fragments can be imposed by
constraints, which are all expressed in Cartesian coordinates for simplicity. The
Lagrange multipliers are determined after each integration step by substituting the
new positions into the constraint equations.

The algorithm, called SHAKE, is formulated within the framework of the Verlet
algorithm. The forces experienced by the particles consist of physical and of con-
straint forces. The constraints are given by σk(R) = 0, where k = 1, . . . , M; M
is the number of constraints. We denote the physical force on particle i by Fi and
the constraint force is

∑M
k=1 λk∇iσk(R), where λk is the Lagrange multiplier which

is to be determined. At time step t = nh we have at our disposal the positions at
times t and t − h. These positions satisfy the constraint equations σk(R) = 0 to
numerical precision. The aim is to find the positions at time t + h, satisfying the
constraint equation. First we calculate the new positions r̃i(t + h) without taking
the constraints into account:

r̃i(t + h) = 2ri(t)− ri(t − h)+ h2Fi[ri(t)]. (8.125)

The final positions ri(t + h) can be written as

ri(t + h) = r̃i(t + h)−
M∑

k=1

λk∇iσk[R(t)]. (8.126)

The λk are found in an iterative procedure. We number the iterations by an index
l. In each iteration, a loop over the constraints k is carried out, and in each step of
this loop, the Lagrange parameter λk and all the particle positions are updated. The
positions are updated according to

rnew
i = rold

i − h2λ
(l)
k ∇iσk[R(t)]. (8.127)

The parameter λ(l)k is found from a first order expansion of σk(R), requiring that
this vanishes:

σk[Rnew] ≈ σk[Rold] − h2λ
(l)
k

∑
i

∇iσk[Rold]∇iσk[R(t)] = 0, (8.128)

leading to

λ
(l)
k = σk[Rold]

h2
{∑

i ∇iσk[Rold]∇iσk[R(t)]
} . (8.129)
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Each step will therefore shift the positions more closely to the point where they all
satisfy the constraint. The iterative process is stopped when all the constraints are
smaller (in absolute value) than some small positive number.

The algorithm can be summarised as follows:

Calculate R̃(t + h) using (8.125);
Set Rold equal to R̃(t + h);
REPEAT

Calculate λ(l)k from (8.129);
FOR k = 1 TO M DO

Set Rold equal to Rnew

Update Rold to Rnew using (8.127);
END FOR

UNTIL Constraints are satisfied.

The SHAKE algorithm turns out to be quite efficient: for a system of 48 atoms with
112 constraints, typically 25 iterations are necessary in order to achieve convergence
of the constraints within a relative accuracy of 5 × 10−7 [52].

8.7 Long-range interactions

Coulombic and gravitational many-particle systems are of great interest because
they describe plasmas, electrolytic solutions, and celestial mechanical systems. The
interaction is described by a pair-potential which in three dimensions is proportional
to 1/r – in two dimensions it is ln r. The long range character of this potential poses
problems. First of all, it is not clear whether the potential can be cut off beyond some
finite range. One might hope that for a charge-neutral Coulomb system, screening
effects could justify this procedure. Unfortunately, for most systems of interest, the
screening length exceeds half the linear system size that can be achieved in practice,
so we cannot rely on this screening effect to justify cutting off the potential, as this
would essentially alter the form of the screening charge cloud. Also, when using
the minimum image convention with periodic boundary conditions, equally charged
particles tend to occupy opposite ends of a half diagonal of the system unit cell in
order to minimise their interaction energy, thus introducing unphysical anisotropies.
Therefore, we cannot cut off the potential and all pairs of interacting particles must
be taken into account when calculating the forces.

Connected with this is an essential difference in the treatment of periodic or
nonperiodic system cells. In the latter case, we simply use the 1/r potential (or
ln r in two dimensions), but in the periodic case we must face the problem that in
general the sum over the image charges in the periodic replicas does not converge.
This can be remedied by subtracting an offset from the potential (note that adding



242 Molecular dynamics simulations

or subtracting a constant to the potential does not alter the forces and hence the
dynamics of the system) leading to the following expression for the total configur-
ational energy for a collection of particles with charge (or mass) qi located at qi,
i = 1, . . . , N :

U =
∑

R

∑
i<j

qiqj

|ri − rj + R| −
∑
i<j

qiqj

∑′
R

1

R
. (8.130)

Here
∑

i<j denotes a sum over i and j running from 1 to N with the restriction i < j;
furthermore,

∑
R denotes a sum over the locations R of the system replicas, the

prime with the second sum denoting exclusion of R = 000. From now on we shall
restrict ourselves to charge-neutral systems with

∑
i qi = 0, for which the second

term in (8.130) vanishes. The system then has a dipole moment and the leading term
in computing the total energy in PBC is the result of the dipole–dipole interactions
between the replicas. Evaluating the sum over the replicas is a difficult problem
even for charge-neutral systems and it will be addressed in the next subsection. In
Section 8.7.2 we shall then see how the forces can be evaluated more efficiently
than in the conventional MD approach where we must sum over all pairs.

8.7.1 The periodic Coulomb interaction

The total configurational energy of the charge-neutral system is given by

U =
∑

R

∑
i<j

qiqj

|ri − rj + R| ;
∑

i

qi = 0. (8.131)

It is assumed here that the particles are point particles, that is, their charge distri-
bution is given by a delta-function ρi(r) = qiδ(r − ri). In most realistic cases
there will be additional short range interactions preventing the particles from
approaching each other too closely. We now apply a Fourier transform as defined
in Eqs. (4.104)–(4.105) to (8.131). We have

1

r
=
∫

d3k

(2π)3
4π

k2 eik·r. (8.132)

Substituting this into (8.131) and using

∑
R

eik·R = (2π)3

V

∑
K

δ3(k − K) (8.133)

where V is the volume of the system and K are reciprocal lattice vectors, we obtain

U = 1

V

∑
K �=000

∑
i<j

eiK·rij

K2
qiqj. (8.134)
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Wehavenotyetmadeanyprogressaswehaveonlyreplacedthe infinitesumoverR by
another infinitesumoverK. Itmightseemthat thissumdivergesforsmallK,but this is
not thecase forcharge-neutral systems: thisneutrality is responsible for theexclusion
of the K = 000 term, and it ensures convergence of the small-K terms. Surprisingly,
the divergences in the original real-space sum (8.131) were associated with the long
rangecharacterof the forcewhereas thedivergence in (8.134) isdue to the short range
(large K) part. In reality, the ions have a finite size, which means that they will repel
eachotheratshortdistances.This implies that theCoulombinteractionhas tobe taken
into account for ranges beyond some small cut-off rcore only, and we can neglect the
K-values for K > 2π/rcore. Of course, this does not yield an exactly spherical cut-off
as the reciprocal lattice is cubic, but if the cut-off radius is sufficiently small this will
cause no significant errors. Moreover, the core radius can be chosen much smaller
than the range of repulsive interaction (which is always present in realistic models)
so that this error can be reduced arbitrarily.

In case one insists on having delta-function distributions, or if the cut-off radius
is so small that calculating the Fourier sum is still inconveniently demanding, it is
possible first to replace the delta-charges by artificial, extended charge distributions
with some finite radius and then correcting for this replacement. This is done in
the so-called Ewald summation technique. We shall not give a full derivation of
the Ewald summation method since it is quite lengthy – it is described elsewhere
[55, 56] – but sketch briefly the idea behind this technique. In the Ewald method,
the extended charge distribution is taken to be a Gaussian:

ρi(r) = qi

(α
π

)3/2
exp(−α|r − ri|2) (8.135)

where the normalisation factor is for the three-dimensional case. This charge distri-
bution results in a converging K-sum, and this extension is corrected for by adding
the potential resulting from the difference between the point-charge and Gaus-
sian distribution. Since this difference is neutral, it generates a rapidly decaying
potential, which can then be treated by the minimum image convention. The total
interaction potential for charges qi located at ri is then given as

UPBC = 2π

V

∑
K �=000

∣∣∣∣∣
∑

i

qie
iK·ri

∣∣∣∣∣
2

e−K2/(4α)

K2
+
∑
i<j

qiqj
erfc(

√
αrij)

rij
−
(α
π

)1/2 N∑
i=1

q2
i

(8.136)
where the function erfc is the complementary error function defined in (4.116):
erfc = 1 − erf. The first term of the Ewald sum converges rapidly due to the
exp[−K2/(4α)] term resulting from the Gaussian charge distribution. The second
term in the sum is short ranged, so it can be treated in a minimum image convention.
The forces can be found by differentiation. The Ewald sum can also be generalised
for dipolar interactions (Ewald–Kornfeld method).
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In a careful treatment of the Ewald technique, the sum is carried out formally
by taking a large volume of some particular shape (e.g. a sphere) containing the
system replicas and then this shape is increased. The reason for this is that the
sum over the interactions is conditionally convergent, i.e. it depends on the order
in which the various contributions are taken into account. This is explained by the
fact that the system replicas all have a dipole moment and will hence build up a
surface charge at the boundary of the huge volume. The most natural boundary
condition (the one which is arrived at in more pedestrian derivations) is consistent
with the sphere being embedded in a perfectly conducting medium. For the sphere
embedded in a dielectric, a correction must be included [56]. It is important to be
aware of this when calculating (say) dielectric properties of a charged system.

8.7.2 Efficient evaluation of forces and potentials

As a result of the long range of the forces, all interacting pairs must be taken
into account in the calculation of forces or potentials. The straightforward imple-
mentation, considered in the previous sections of this chapter, also called the
particle–particle method (PP) because all pairs are considered explicitly, would
require O(N2) steps, but it turns out possible to reduce this to a more favourable
scaling. We shall briefly sketch two other methods, and then consider a third one,
the tree method in greater detail.

In the particle-mesh (PM) method, a (usually cubic) grid in space is defined. A
mass (or charge) distribution ρ is then defined by assigning part of each particle’s
mass (or charge) to its four neighbouring grid points according to some suitable
scheme. The potential can then be found by solving Poisson’s equation on the grid

∇2
DU(r) = −4πρ(r) (8.137)

where ∇2
D is the finite-difference version of the Laplace operator. Using fast Fourier

transforms (see Appendix A9), this calculation can be carried out in a number of
steps proportional to M log M where M is the number of grid points. Knowing
the potential, the force at any position can be found by taking the finite difference
gradient of the potential, after a suitable correction for the self-energy resulting
from the inclusion of the interaction of a particle with itself in this procedure.
This method obviously becomes less accurate for pairs of particles with a small
separation, as in that case the Coulomb/gravitation potential is not sufficiently
smooth to be represented accurately on the grid. Therefore it is sensible to treat
particles within some small range (for example a range comparable to the grid
constant) by the PP method. This can be done by splitting the force into a smooth
long range (LR) and a short range (SR) part:

F = FLR + FSR, (8.138)
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...........

Figure 8.6. Hierarchical subdivision of the full simulation space (a square) into
children, grandchildren etc.

such that the short range force vanishes beyond some small range, and the long
range force can be calculated accurately on the grid. The splitting can be obtained
by considering the long range force as resulting from a particle whose charge
(or mass) is distributed over some finite range (homogeneous sphere, Gaussian
distribution, …). The short range force is then the potential resulting from the
difference between the point charge and the finite-width distribution (cf. the Ewald
method). The long range interactions are treated as in the PM method, and the
short range ones can be dealt with using the PP scheme. The resulting method is
called the particle–particle/particle–mesh (PPPM) or P3M method. For a detailed
description of the PM and PPPM methods, see Ref. [19].

We now describe the tree-code algorithm in some detail [57–60]. The amount of
computer time involved in the evaluation of the forces in this method is reduced to
O(N ln N) steps. We describe the Barnes–Hut[57] version in the formulation by van
Dommelen and Rundensteiner [61, 62] and restrict ourselves to two-dimensional
gravitational (or Coulomb) systems, with an interaction ln r between two particles
of unit mass (or charge) and separation r. The idea of the method is that the force
which a mass experiences from a distant cluster of particles can be calculated from
a multipole expansion of the cluster. The convergence of the multipole expansion
depends on the ratio of the distance from the cluster and its linear size.

The total system volume is hierarchically divided up into blocks. We start with
a square shape (level 0) which in a first step is divided into four squares of half the
linear size (level 1), and at the next step each of these squares is divided up into four
smaller ones etc. We speak of parents and children of squares in this hierarchy –
see Figure 8.6. Now consider some square S at level n. It is not justified to apply
the multipole expansion to nearest neighbour squares as particles in neighbouring
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Figure 8.7. Interaction list of a square S at level n. The squares at level n are
separated by thin lines, their parents (at level n − 1) by heavy lines. For the square
labelled by S, the squares in the interaction list of a square are denoted by I. The
nearest neighbours are labelled by N.

squares might be very close so that the multipole expansion would require far too
many terms. These squares will be dealt with at a higher level, so we apply this
approximation in each step to at least next nearest squares and skip squares lying in
regions that have been treated at previous levels. Therefore, the squares with which
the particles in S will interact at the present level are those (1) which are not nearest
neighbours of S and (2) whose parent was a nearest neighbour of the parent of S.
These squares form the interaction list of S. Figure 8.7 shows which squares are in
the interaction list of S. It will be clear that all the interactions will be taken into
account when proceeding in this way.

More specifically, at level n we carry out two steps.

1. We calculate the multipole moments of each square of the present level.
2. For each particle, we calculate the interactions with the interaction list of the

square to which it belongs using the multipole expansion for the particles in the
cells.

This process is carried through over nmax = (log2 N)/2 steps so that for N being an
integer power of 4, the squares at the lowest level contain on average one particle.
Empty squares are ‘pruned’ from the tree, that is, they are not divided up any more.

Let us now calculate the number of steps needed in this procedure. We assume that
we carry out the multipole expansion up to order M. This number is independent of
the number of particles N . At level n, the first step, in which the multipole moments
are calculated, requires N × M steps. The second step requires N × M × K steps,
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where K is the average size of the interaction list, which is at most 27. K and M
are fixed numbers, there are O(ln N) levels, so the total number of steps scales as
O(N ln N).

For two dimensions, the multipole moment expansion is very simple if the space
is viewed as a complex plane with particles at positions z = x + iy. The potential
is then given as the real part of ln(z) and this can easily be expanded in a Taylor
expansion around the centre of the cell. For a cluster centred at the origin and
consisting of particles of charge qi at positions zi, the potential at the point z is
given by

U(z) =
Nc∑

i=1

qi ln(z − zi) = a0 ln z −
M∑

k=1

ak

zk
+ O

(
R

z

)M+1

(8.139)

where R is the linear size of the cluster containing Nc particles and the moment
expansion coefficients ak are given by

a0 =
∑

i

qi and ak =
Nc∑

i=1

qizk
i

k
, k ≥ 1. (8.140)

For the field written as a complex number E at the point z we have

E(z) =
M∑

k=0

ak

zk+1
+ O(R/z)M+1. (8.141)

From Figure 8.7 it can be seen that a worst case estimate for R/z is 2/3. In practice,
fewer than 20 multipole coefficients are necessary to obtain machine accuracy (32
bits).

In fact, it turns out to be possible to reduce the amount of work needed for the
force evaluation to O(N). The resulting method is called the fast multipole method
(FMM) – see Refs. [62] and [63].

8.8 Langevin dynamics simulation

Most realistic physical systems are tractable only in a model, in which the inter-
esting features of the system are highlighted and in which the less relevant parts
are either eliminated or treated in an approximate way. In this spirit we have for
example eliminated molecular degrees of freedom in Section 8.6 by considering
(parts of) molecules to be rigid. Another example of this approach is the Langevin
dynamics technique, the subject of the present section. Consider a solution contain-
ing polymers or ions which are much heavier than the solvent molecules. As the
kinetic energy is on average divided equally over the degrees of freedom, the ions
or polymers will move much more slowly than the solvent molecules. Moreover,
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because of their large mass, they will change their momenta only after many col-
lisions with the solvent molecules and the picture which emerges is that of the
heavy particles forming a system with a much longer time scale than the solvent
molecules. This difference in time scale can be employed to eliminate the details of
the degrees of freedom of the solvent particles and represent their effect by forces
that can be treated in a simple way. This process can be carried out analytically
through a projection procedure (see chapter 9 of Ref. [11] and references therein)
but here we shall sketch the method in a heuristic way.

How can we model the effect of the solvent particles without taking into account
their degrees of freedom explicitly? When a heavy particle is moving through
the solvent, it will encounter more solvent particles at the front than at the back.
Therefore, the collisions with the solvent particles will on average have the effect
of a friction force proportional and opposite to the velocity of the heavy particle.
This suggests the following equation of motion for the heavy particle:

m
dv
dt
(t) = −γ v(t)+ F(t) (8.142)

where γ is the friction coefficient and F the external or systematic force, due to
the other heavy particles, walls, gravitation, etc. It has been noted in Section 7.2.1
that the motion of fluid particles exhibits strong time correlations and therefore the
effects of their collisions should show time correlation effects. Time correlations
affect the form of the friction term which, in Eq. (8.142), has been taken to be
dependent on the instantaneous velocity but which in a more careful treatment
should include contributions from the velocity at previous times through a memory
kernel:

m
dv
dt
(t) = −

∫ t

−∞
dt′ γ (t − t′)v(t′)+ F(t). (8.143)

In order to avoid complications we shall proceed with the simpler form (8.142). In
the following we shall restrict ourselves to a particle in one dimension; the analysis
for more particles in two or three dimensions is similar.

Equation (8.142) has the unrealistic effect that if the external forces are absent,
the heavy particle comes to rest, whereas in reality it executes a Brownian motion.
To make the model more realistic we must include the rapid variations in the force
due to the frequent collisions with solvent particles on top of the coarse-grained
friction force. We then arrive at the following equation:

m
dv

dt
(t) = −γ v(t)+ F(t)+ R(t) (8.144)

where R(t) is a ‘random force’. Again, the time correlations present in the fluid
should show up in this force, but they are neglected once more and the force is
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subject to the following conditions.

• As the average effect of the collisions is already absorbed in the friction, the
expectation value of the random force should vanish:

〈R(t)〉 = 0. (8.145)

• The values of R are taken to be uncorrelated:

〈R(t)R(t + τ)〉 = 0 for τ > 0. (8.146)

• The values of R are distributed according to a Gaussian:

P[R(t)] = (2π〈R2〉)−1/2 exp(−R2/2〈R2〉). (8.147)

All these assumptions can be summarised in the following prescription for the
probability for a set of random forces to occur between t0 and t1:

P[Ri(t)]t0<t<t1 ∝ exp

(
− 1

2q

∫ t1

t0
dt R2

i (t)

)
(8.148)

with q a constant to be determined.
Below we consider the numerical integration of the equations of motion for the

heavy particles, and in that case it is convenient to assume that the random force is
constant over each time step: at step n, the value of the random force is Rn. For this
case, the correlation function for the Rn reads

〈RnRm〉 =
∫

dRndRn+1 · · · dRm exp(−1/2q
∑m

l=n R2
l�t)RnRm∫

dRndRn+1 · · · dRm exp(−1/2q
∑m

l=n R2
l �t)

(8.149)

which yields the value 0 for n �= m, in accordance with the previous assumptions.
For n = m we find the value q/�t, so we arrive at

〈RnRm〉 = q

�t
δnm. (8.150)

For the continuum case �t → 0 (8.150) converges to the δ-distribution function

〈R(t)R(t + τ)〉 = qδ(τ ). (8.151)

We now return to the continuum form of the Langevin equation (8.144). This
can be solved analytically and the result is

v(t) = v(0) exp(−γ t/m)+ 1

m

∫ t

0
exp[−(t − τ)γ /m]R(τ )dτ . (8.152)

Because the expectation value of R vanishes we obtain

〈v(t)〉 = v(0) exp(−γ t/m) (8.153)

which is to be expected for a particle subject to a friction force proportional and
opposite to the velocity.
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The expectation value of v2 is determined in a similar way. Using (8.151) and
(8.144) we find

〈[v(t)]2〉 = v2
0 exp(−2γ t/m)+ q

2γm
(1 − e−2γ t/m), (8.154)

which for large t reduces to

〈[v(∞)]2〉 = q

2γm
. (8.155)

According to (8.152), v depends linearly on the random forces R(t) and as the
latter are distributed according to a Gaussian, the same will hold for the velocity.
The width is given by (8.155), so we have

P[v(t)] =
(
γm

πq

)1/2

exp[−mv(t)2γ /q] (8.156)

for large t. This is precisely the Maxwell distribution if we write

q = 2kBTγ , (8.157)

so this equation defines the value of q necessary to obtain a system with temperature
T . In Chapter 12 we shall discuss Langevin types of equations in a more formal
way, using the Fokker–Planck equation.

The velocity autocorrelation function can also be obtained from (8.152):

〈v(0)v(t)〉 = 〈v(0)2〉e−γ t/m. (8.158)

The absence of a long time tail in this correlation function reflects the oversim-
plifications in the construction of the Langevin equation, in particular the absence
of correlations in the random force and the fact that the frictional force does not
depend on the ‘history’ of the system.

The results presented here are easily generalised to more than one dimension.
However, including a force acting between the heavy particles causes problems if
this force exhibits correlations with the random force, and Eq. (8.157) is no longer
valid in that case. Such correlation effects are often neglected and the systematic
force is simply added to the friction and the Langevin term.

A further refinement is the inclusion of memory kernels in the forces, similar to
the approach in Eq. (8.143). In that case, the random force is no longer uncorrelated –
it is constructed with correlations in accordance with the fluctuation-dissipation
theorem [64]:

〈R(0)R(t)〉 = 〈v2〉γ (t). (8.159)

However, this equation is again no longer valid if external forces are included. The
approach with memory kernels has led to a whole industry of so-called generalised
Langevin-dynamics simulations [64–67].
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The systematic interaction force between the particles in the solvent will affect
the friction which these particles are subject to through hydrodynamic effects.
This coupling is usually neglected, but a method including these effects has been
proposed and implemented [68]. We mention the dissipative particle dynamics
(DPD) method which is based on these ideas [69].

An algorithm for simple Langevin dynamics can be formulated starting from the
methods given in Section 8.4.1. Suppose the random force is constant during one
integration step. Denoting the force during the interval [0, h] by R+ and that during
the interval [−h, 0] by R−, the random force can directly be included into (8.40):

x(h)[1 + γ h/2] + x(−h)[1 − γ h/2] = 2x(0)+ h2[F(0)+ R+/2 + R−/2].
(8.160)

Therefore, at each step a new value of the random force during the new interval
must be drawn from a Gaussian random generator, and this force is to be used
together with the random force generated at the previous step in order to predict
the new position. This is, however, not always a satisfactory procedure. Normally,
the integration time step h is determined by the requirement that the systematic
force F can be assumed to be reasonably constant over a time interval h. This
means that the time over which we take the random force to be constant depends
on the smoothness of the systematic force. In fact we would prefer to allow for
a rapidly varying random force combined with a large time step allowed by the
systematic force. This turns out to be possible. Using the statistical properties of
the random force, equations of motion can be obtained which are somewhat similar
to the ones given here, but with more complicated correlations between the random
contributions at subsequent steps – for details see Ref. [70].

It is straightforward to develop a Langevin program for a molecule in a fluid or a
gas, using the simple algorithm presented here. For molecules containing chains of
at most three chemically bonded atoms, torsion is absent, which reduces the number
of forces considerably. Examples are molecules with a tetrahedron conformation,
such as CH4 (methane) and CF4, and two-dimensional molecules. In Problem 8.9
the construction of a Langevin molecule for methane is considered.

8.9 Dynamical quantities: nonequilibrium molecular dynamics

In the molecular dynamics method, the equations of motion of a classical
many-body system are integrated numerically. There is no reason to restrict the
applicability of this method to systems in equilibrium. MD is the method of choice
for dynamic phenomena in equilibrium or nonequilibrium systems. We speak of
nonequilibrium molecular dynamics (NEMD). We consider two examples very
briefly here.
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There exists a relation between time correlation functions and transport coeffi-
cients via the dynamic fluctuation-dissipation theorem [71, 72]. The physical idea
behind this theorem is that, in an equilibrium system, particles diffuse and the
dynamics of this diffusion tells us something about their ability to transport for
example heat or charge. Therefore we can measure transport coefficients by study-
ing the diffusion of the positions or velocities through the system. A disadvantage
of measuring transport quantities in this way is that diffusion is often rather slow in
equilibrium so that accurate results for transport coefficients are sometimes hard to
obtain. Therefore it is useful to apply a field and measure the response to the action
of that field directly by keeping track of the motion of the particles (a thermostat
must be used in order to prevent the energy from increasing steadily as a result of
the interaction with the external field). A complication may arise in connection with
periodic boundary conditions, as in that case surface effects may be induced if the
applied force is not compatible with the periodicity. Therefore perturbing forces
are often chosen sinusoidal with a period compatible with the PBC. An example is
provided by the determination of the shear viscosity, caused by fluid layers moving
in parallel directions, with different speed, rubbing against each other. The shear
viscosity can be measured [73, 74] by applying a force in the x-direction which
varies with the coordinate z according to

F(z) = F0 cos(kz)x̂ (8.161)

where k = 2π/L, and L is the linear size of the cubic volume. The shear viscosity η
can then be measured via the mean velocity in the x-direction of the particles with
a given coordinate z:

vx(z) = ρ/(k2η)F0 cos(kz) (8.162)

and this average velocity can easily be determined. In order to improve the estimate
one can determine the shear viscosity with various kn = 2πn/L to extrapolate to
k → 0.

A second example of NEMD is the transfer of energy between different degrees
of freedom. This is of interest in detonation waves. A detonation which traverses
a medium of explosive molecules continuously ‘recharges’ itself by new unstable
molecules falling apart, thereby releasing fragments with high velocities. For an
unstable molecule to be disrupted it is necessary for the translational energy impar-
ted by a collision with a fast fragment to be transferred to bond length vibrations. For
diatomic molecules, the two different degrees of freedom can easily be separated.
Holian et al. [39, 40] have carried out MD simulations in which the translational
and vibrational degrees of freedom were given different temperatures by coupling
them to different heat baths which were then turned off or replaced by a single bath
(at the higher temperature). In this way it was possible to determine energy transfer
rates between the different modes.
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Exercises

8.1 [C] For coding the leap-frog method (Eq. (8.7)) two arrays are needed, one
containing the velocities at times t = (n + 1/2)h, and one for the positions at t = nh.
The same holds for the velocity-Verlet algorithm.

At first sight it might seem that the Verlet algorithm would need more memory:
arrays containing the positions at times t = nh, t = (n − 1)h and t = (n + 1)h.
However, the value xi[(n − 1)h] can be overwritten by xi[(n + 1)h]. Use this to code
the Verlet algorithm such that only two arrays are needed. Test it for a number of
particles moving in one dimension and subject to the harmonic oscillator potential.

8.2 The neighbour list proposed by Verlet [8] needs updating every 10–20 integration
steps and this update requires of the order of N2 steps for a system containing N
particles. Another bookkeeping device consists of partitioning the system into cubic
volumes and keeping track of which particles are to be found in each of these
volumes. Consider a two-dimensional L × L system for convenience. We split this
up into P × P squares of linear size L/P. P is chosen such that the potential can be
cut off safely beyond L/P. Suppose we have for each square a list of particles within
that volume. These lists will change whenever a particle leaves a square and moves
to a neighbouring one. The force evaluation now includes only particle pairs whose
members are either in the same or in neighbouring cells.

(a) How many particles are on average to be found in one square?
(b) How many pair forces are on average taken into account in this ‘cell method’?
(c) Calculate the gain in speed with respect to the method in which all pair

interactions are taken into account, assuming that the particles are distributed
more or less homogeneously over the volume.

8.3 The first molecular dynamics simulations were carried out by Alder and Wainwright
for hard spheres [14]. The discontinuity in the potential calls for a different approach
than that used for smooth potentials. The state of the system is given by the positions
ri and velocities vi (i labels the particles) at some time ti which is usually the time of
the last collision experienced by i. We must calculate the velocity changes for the
next pair undergoing a collision.

We consider the elastic collision between two hard spheres, i and j, which are
moving with velocities vi and vj. At time t their positions are ri and rj. After the
collision, velocities are v′

i and v′
j respectively. The sphere diameter is σ .

(a) Show, using energy and momentum conservation, that the changes in velocities
of the two particles are given by

�vi = v′
i − vi = −�vj = rij(vij · rij)

σ 2

where vij = vi − vj and rij = ri − rj at the collision.

For each pair of particles we need to know the time at which they will collide
(note that because of PBC each pair will indeed collide at some time unless the
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velocities have very peculiar values). The collision time for pair i, j is found by

|rij + tvij| = σ .

This is a quadratic equation which yields two solutions for the collision time t. The
first time after the current time must be chosen and recorded as the collision time of
pair ij.

The simulation is now constructed as follows. At the beginning, the particles are
released from a lattice with velocities according to a Boltzmann distribution. For all
N(N − 1)/2 pairs, the collision times are calculated and stored in a sorted list. The
first element of this list contains the first collision to take place. For this collision we
calculate the new velocities and positions. Then each pair containing at least one of
the two collision partners is removed from the list. Their new collision times are
calculated and added again to the list in such a way that the latter remains sorted
with respect to the collision times.

(b) How does the simulation time scale with the number of particles?
(c) Explain why the kinetic energy of the hard sphere system is rigorously constant.

In order to calculate pressures we must adapt the virial theorem to this system.
The virial theorem for smooth forces reads

βP

ρ
= 1 + 1

3NkBT

〈
N∑

i=1

ri · Fi

〉
.

The problem is that the force acts over an infinitely small time during which it
has an infinite value. Show that for this case the virial theorem reads

βP

ρ
= 1 + 1

N〈v2〉t
∑

collisions

vij · rij,

where the sum is over the collisions taking place within the sampling time t.

8.4 (a) Show that the Verlet algorithm can be written in the form:(
p(t + h/2)
x(t + h)

)
=
(

p(t − h/2)+ hF[x(t)]
x(t)+ hp(t − h/2)+ h2F[x(t)]

)
.

(b) Find the Jacobian matrix of this map and show that the Verlet algorithm is
symplectic.

8.5 Consider a time-evolution operator acting on vectors in two dimensions, which is
described by the symplectic operator exp(tAD):

z(t) = exp(tAD)z(0),

z = (p, x) = (z1, z2).

(a) Show that symplecticity implies that

∂A1

∂p
= −∂A2

∂x
.
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(b) Find a necessary condition to write AD as J∇zHD. Show that this condition is
equivalent to that found in (a).

(c) Show that HD is a conserved quantity.

8.6 In this problem we consider Andersen’s method for keeping the temperature
constant during a MD simulation. In particular we want to find the momentum
refresh rate R for which the method mimics wall collisions best. The refresh rate is
defined such that the average number of velocity updates during a time �t is equal
to R�t. Suppose the wall of the system is at temperature T , but the system itself is at
a temperature T +�T .

(a) Show that the rate at which heat is absorbed by the system is given by

�Q

�t
∼ κV1/3�T ,

where κ is the thermal conductivity, defined by ∇T = κj, where j is the heat
flowing through a unit area per unit time.

(b) Show that the rate at which heat is transferred to a system without walls in
Andersen’s method is equal to

�Q

�t
∼ RNkB�T .

(c) Derive from the two equations obtained the optimal rate:

Ropt ∼ κ

n1/3kBN2/3

where n = N/V .

8.7 [C] In this problem we consider a program for simulating nitrogen molecules in
microcanonical MD using the method of constraints. The equations of motion are
given in Section 8.6.2 ( Eqs. (8.124)). The Lagrange parameters λ occuring in these
equations are determined by requiring the constraint to be satisfied by the positions
as predicted in the Verlet algorithm. These positions are given in the form

ri(t + h) = ai + biλ.

The list of particles is grouped into pairs of atoms forming one nitrogen molecule:
atoms 2l − 1 and 2l belong to the same molecule. The integration is carried out in a
loop over the pairs l – each pair has its own Lagrange parameter λl . For reasonable
time step sizes the roots λl of the constraint equation are real. The smallest of these
(in absolute value) is to be chosen. The forces can be calculated as usual, taking only
interactions between atoms belonging to different molecules into account.
Parameters for the Lennard–Jones interaction are ε = 37.3 K, σ = 3.31 Å and
d = 0.3296σ .

Periodic boundary conditions are implemented with respect to the centre of mass
of the molecules. If a molecule leaves the system cell it is translated back into it (as a
whole) according to PBC. Note that determining the momentum from the positions
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at t + h and t − h after such a translation can cause severe errors: this should be done
before moving the molecule back into the cell.

(a) Implement this algorithm for liquid nitrogen.
The program can be checked by verifying whether the kinetic energies

associated with translational and vibrational degrees of freedom satisfy
equipartition. The total kinetic energy Ktot can be determined as in the argon case
by taking all atomic velocities into account. From this, the temperature can be
determined as NkBT = 4/5Ktot where N is the number of molecules. The
translational kinetic energy Ktrans can be calculated by taking into account the
molecular velocities (sums of velocities of the two atoms) and the temperature
can be found from this as NkBT = 3/2Ktrans. The average temperatures should be
the same for both procedures.

Check whether this requirement is satisfied.
(b) The virial theorem applies as usual: molecular forces should be used and the

separation occurring in this theorem is the separation between the centres of mass
of the molecules. The correction term is evaluated using g ≡ 1 for the correlation
function beyond the cut-off distance, where it is assumed that g is independent of
distance but also of the angular configuration of the molecular pairs.

(c) Calculate the pressure also using the atomic forces (including the constraint
forces), and compare the result with (b).

(d) Calculate the pressure for various temperatures and densities. Cheung and
Powles give extensive data on thermodynamic quantities [46]. The table below
gives some of the data (in reduced units) obtained by Cheung and Powles.

ρ T P U

0.6964 2.86 8.35 −17.16
0.6964 1.72 1.29 −18.68
0.6220 2.70 2.50 −15.82
0.6220 2.17 0.27 −16.30

8.8 [C] In this problem, we consider the implementation of the Andersen method for
simulating a system in the canonical ensemble. Remember that the preferred energy
estimator for the Verlet/leap-frog algorithm is

E =
∑

i

[pi(t + h/2)+ pi(t − h/2)]2

8
+ V [R(t)],

where R is the combined position coordinate of the system which consists of particles
of mass m = 1. In view of the form of this estimator, it seems sensible to update the
momenta at the same time instances for which we calculate the positions, and it is
convenient to define the ith component of the momentum coordinate at time t:

pi(t) = [pi(t + h/2)+ pi(t − h/2)]/2.
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(a) Using the leap-frog/Verlet algorithm, show that

pi(t + h/2) = pi(t)+ hFi/2.

The refreshed momenta pi(t) are drawn from a Maxwell–Boltzmann distribution,
and the momenta at time t + h/2, which are needed in the Verlet/leap-frog
algorithm are then calculated using this last formula.

(b) Implement the Andersen update algorithm for argon and compare the results with
the microcanonical program.

(c) Now suppose that the momenta are refreshed at every step. Show that in that case
we have

ri(t + h) = ri(t)+ h2Fi/2 + hζi(t),

where ζi(t) is the ith random momentum component generated according to the
Maxwell–Boltzmann distribution. This is a kind of Langevin equation. Discuss
the difference with the Langevin equation described in Section 8.8.

8.9 [C] In this problem we consider the implementation of the Nosé–Hoover thermostat
in the microcanonical MD simulation for Lennard–Jones argon described in
Section 8.3. The extension is straightforward – the equations are given in
Section 8.5.1. You can verify now that the behaviour of the Nosé–Hoover thermostat
is often nonergodic. For T = 1.5 and ρ = 0.8 the behaviour is as it should be for
coupling constant Q = 1. You can check that the standard deviation in the
temperature is in accordance with Eq. (8.81). For lower temperatures, like T = 0.85,
ρ = 1.067, the temperature exhibits large oscillations. The period of these
oscillations depends on Q [26].

8.10 (a) Verify that when we take g = 3N instead of g = 3N + 1 in the derivation of the
Nosé–Hoover thermostat, the probability density for configurations (P, R) turns
out to be:

ρ(P, R) = 1

3N

(
2πQ

kBT

)1/2

exp

[−H0(P, R)(3N + 1)

3NkBT

]
.

(b) For this choice, verify that quantities sampled in a simulation yield averages as
given in Eq. (8.94).

8.11 [C] In this problem, a code for evaluating the potential felt by the particles in a
two-dimensional Coulomb (or gravitational) system is developed, using the
tree-code method of Section 8.7.2.

Although experienced programmers would be tempted to start building tree
structures using pointers and recursive programming for this problem, it can be dealt
with using more pedestrian methods. The point is that the squares can be coded by
two integers NX, NY which are considered as bit-strings. The first of these contains
information about the x-coordinate of the square and the second about the
y-coordinate. They are ordered linearly: the leftmost column of squares has NX = 0,
the rightmost column NX = 2n − 1 etc., and a similar coding is adopted for the
rows. If squares are neighbours, their respective NX and NY-codes should differ at
most by 1 (and they should not be equal). The codes of the parents can be found
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simply by shifting the bits of NX and NY one position to the right (least significant
direction) and it can therefore easily be checked in the program whether the parents
of the squares under consideration are neighbours or not.

The calculation of the multipole moments in each box (Eq. (8.140)) is best done
in a loop over the particles, recording its contribution to all the multipole coefficients
of the to which square it belongs. Also, the calculation of the interactions
(Eq. (8.139)) can be done in a loop over the particles, by executing for each particle
a loop over the interaction list of the square to which it belongs.

Proceeding this way, it is not necessary to keep for each square a list of the
particles belonging to it. However, at the finest level, the interactions between
particles within the same square and between particles in neighbouring boxes must
be calculated directly so only for the last step do we need such a list for each square.
If you want to economise on memory, you might create a linked list for each square
containing the indices of the particles in it, but for a test you may use static arrays.

Compare the results for the tree code with those of a direct calculation, varying
the number of terms in the multipole expansion.

8.12 [C] In this problem we consider a simulation of a methane molecule using the
Langevin approach. Methane consists of a carbon atom sitting at the centre of a
tetrahedron whose vertices are occupied by four H atoms. The C–H bond has a
preferred interatomic distance of 2.104a0. The stretch-potential associated with the
bond length varies as

Vstretch = 1
2κ(l − l0)

2; l0 = 2.104a0.

The force constant κ has the value κ = 0.30 (in atomic units). This force acts on
both the carbon and the hydrogen atoms and is directed along the C–H bond.

The preferred H–C–H angle is 109◦ and the potential for this bending angle is

Vbend = −λ cos(ϕ − ϕ0)
2; ϕ0 = 109◦,

with a force constant λ = 0.74. This force lies in the H–C–H plane, and acts on the
two H atoms and on the C atom. The forces on the H-atoms are perpendicular to the
C–H bonds, and the bending force on the C atom is directed along the bisecting line
of the H–C–H angle.

These two ‘force fields’, bending and stretching, specify the force on each of the
atoms. To find the forces, given the position rC of the carbon atom and the four
positions rH of the hydrogen atoms, you calculate first the forces on the hydrogen
atoms only. The stretch forces can easily be found by calculating the vector
rCH = rH − rC. The bending force is slightly more difficult. Denoting the two
hydrogen atoms of a H–C–H chain as H1 and H2, calulate rCH1 and rCH1. Then
calculate the dot product between these two vectors. From this, the cosine of the
bending angle can be found. Moreover, the direction of the force can be found from
the cross-product of rCH1 and rCH1: the bending force on H1 is then perpendicular to
this cross product and to the vector rCH1, and similarly for H2. Knowing the forces
on the hydrogen atoms, you can calculate their sum. The force on the carbon atom is
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then simply the opposite of this, as the sum of all the interparticle forces adds up
to zero.

(a) [C] Write routines for calculating the forces on the atoms and use these in an
ordinary (microcanonical) MD simulation of the atom. To check the program,
you can put the H-atoms on the vertices of a tetrahedron with the C-atom in the
centre. If you release the molecule from this conformation with a CH-distance
slightly smaller or larger than the equilibrium distance of 2.104a0, the molecule
should stretch and contract isotropically in an oscillatory fashion.

(b) [C] Keep the temperature of the molecule constant by rescaling the velocities
after each time step. Determine the average total energy of the molecule.

(c) [C] Add a Langevin thermostat to the simulation, for example by rescaling the
velocities after every time step. Use the algorithm given in the last section for
solving the equations of motion with friction. Add a Langevin random force,
drawn from a Gaussian distribution with a width

σ 2 = q/h

to the interparticle force. Check that the temperature is given by

T = 1/(2γ ).

The temperature is determined from the kinetic energy – we have

T = 15

2
kBT .

Determine the average total energy and compare the result with the program
of (b).
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