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Abstract. The demand for rapid procedures to solve Poisson's equation has led to the 
development of a direct method of solution involving Fourier analysis which can solve 
P0isson's equation in a square region covered by a 48 X 48 mesh in 0,9 seconds ca the IBM 
7090. This compares favorably with the best i terative methods which would require about 
10 seconds to solve the same problem. 

The method is applicable to rectangular regions with simple boundary conditions and 
the maximum observed error in the potential  for several random charge distributions is 
5 X i0 -r of the maximum potentiM change in the region. 

I. [n#oduction 

In many engixmering problems eoneenfing plasmas, deetron tubes and ion 
guns, it is desired to follow the motion of numerous deetrostatieally iateraeting 
charged particles in two dilnensions. If the region involved is divided into a large 
munber of calls, and the velocity and position of each charged particle is re- 
corded, then this simulation of space charge flow may be performed stepwisc in 
time as follows: 

1. Chm'ge Disb'ibution. At the beginning of each time step the position of each 
particle is examined and the charge of each particle :is associat~ed with the eent~er 
of t, he cell in which the particle resides. 

2. Potenlial. The charge distribution found in step 1 is used as the source 
term or right-hand side of Poisson's equation, the solution of which gives the 
dectrostatie potential in the region. 

3. Acceleration. The potential distribution found in step 2 is differenced to 
give an approximation to the electrostatic field acting ca each particle. This 
field is then allowed to accelerate each particle individually for a short time inter- 
val. The new position and velocity of each particle is recorded and the cycle 
repeats at step I. The  description is thus analogous to the projeetim~ of a motion 
picture. 

For sueh a simulation to be useful it is neeessary to follow several thousand 
particles through several hundred time-steps and this means that  the overall 
cycle time must be reduced to a few seconds or less. 

The acceleration of all the particles is a simple calculation and can be per- 
£rmed in about a second on the IBM 7090. ~ The solution of Poisson's partial 
differential equatiml in step 2 is more difficult but it is dear  that  the solutio:tt 
must be obtained in about the same time if the simulation is to be useful. 

Hitherto the tendency has been to use iterative methods to solve such an el- 
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liptic equation. Theoretical estimates of the computing time for the best iterative 
methods, namely the two-line cyclic Chebyshev (2L _~C) and Alternating Direc- 
tion Implicite (ADI) methods, have been made which compare well with the ex- 
perimental results of Hageman [1] and Price and Varga [2]. 

These lead to solution times of 10, 30 and 60 seconds respectively for ADI, 
LCC and SOR methods when applied to a 48 X 48 square mesh and an error 

reduction of 10 -~. 
These solution times are thus roughly 10 times too slow for this application. 
The iterative methods of solution named above are very general and can be 

used to solve Poisson's equation in systems with complicated electrode shapes 
and boundary conditions. In plasma applications however, where the behavior, 
tile space charge distribution is of primary importance, it is often permissible to 
simplify the boundary conditions in order to obtain a faster solution. 

In this paper we describe an alternative direct method of solution which takes 
advantage of this simplification, is applicable to a c~rtain'~- class of important 
problems, and is 10 times faster than the best iterative methods so far reported. 

Tile problem to be discussed here is the solution of Poisson's equation in a 
rectangular domain where the boundary conditions are given on the perimeter of 
the domain only. Tile boundary conditions may be Dirichlet, Neumann or : :  
periodic (combination being permitted provi~ted that the same type of c o n d i t i o n  
pertains Mong the total length of any side). I he method shows to best advantage 
in (x, y) cordinates. Thus we consider this ease, taking the boundary conditions : 
to be zero potential around the perimeter. 

We have 

{a<. <, °~(x' Y) °~4'(x' Y) = p(x ,  y )  = = 
Ox ~ - + Oy 2 - _-< y =< m 

where ¢(x, y) = 0 f o r x  = 0 , 1 o r y  = 0, m. 

2.1 Fourier Analysis. The boundary conditions allow ¢(x, y) to be expanded 
in a I ourmr serms m elther the x-d~rection, y-direction or as a double Fourier series 
in both directions. A double Fourier expansion was suggested as long ago as 1952 
by Hyman [7] and is essentially the method of Tensor Products, reported re- 
cently by Lynch et al [8]. However the determination of Fourier coefficients is a 
time consuming job on a computer and we have found that the fastest computer 
program is obtained if we expand in only one direction and choose this to be 
shortest. Let this be the x-direction then the expansion is 

¢(x, y) = ~ ~k(y) sin ~-k___x 
z ( 2 )  

and similarly for p(x, y) where ~k(y) is the Fourier amplitude of the kth har- 
monic. 

On substituting (2) into the partial differential equation (1) and using the 

i!:!il i̧iiii!i 

(:) 
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orthogonal properties of tile sine functions we obtain a set of ordinary differential 
equations relating the Fourier amplitudes of ,p(x, y) and p(x, y) 

A single Fourier analysis has also been considered by Biekley and MeNm~ee 
[12]. 

In the continuous ease art infinite number of harmonic amplitudes are re- 
quired in the representation of O(x, y). However when performing the finite 
analogue of the expansion (2) to express the value of ¢(z, y) at a discrete num- 
ber of mesh points only, we find the number of harmonies required for the 
ezact representation of the mesh function is equal to the number of mesh points 
(see for example Jeffreys and Jeffreys [6, par. 14.01]). 

Due to the fact that  the sine functions satisfy the boundary conditions and 
are the eigenfunetions of the differential operator in equation (1), the ordinary 
differential equations (3) for each harmonic are independent of each other. 
This change of a partial differential equation into a set of independent ordinary 
dNereatial equations is the first crucial simplification of the method. It can only 
be carried out in certain simple geometriea! situations when, for example, the 
external boundaries are parallel to the coordinate axes and the boundary condi- 
tions are of the type mentioned above. The presence of any internal eonduetors 
for example immediately couples the harmonies in equation (3) and makes 
the method as it stands impractical. However a modification of this direct 
method is being investigated which will allow the inclusion of interior boundaries 
atld is suitable for eases where Poisson's equation is to be solved repeatedly for 
different space charge distributions but with fixed interior electrode surfaces. 

2.2 Tridiagonal Systems. The ordinary differential equations (3), which in 
the finite analogue become a tridiagonal matrix equation, carl be solved in a 
variety of ways. Our experience has been that  the best technique depends on the 
boundary conditions imposed. 

In the ease that  the potential and therefore Sk(y) has prescribed values at y = 
0, m the method of Gauss elimination in the neat form as given by Varga [9] 
a~d others is suitable and may be used for any number of mesh points. Gauss 
elimination is an inefficient method to use if the boundary conditions are periodic, 
and a new technique of "recursive cyclic reduction" has been developed for this 
ease which is particularly neat if the number of mesh points is of the fornl 2 ~ or 
3 × 2 p (see Section 6). This does not seem to be a severe restriction considering 
the resulting increase in computing speed. Indeed reeursive cyclic reduction 
may be applied to the DMehlet boundary conditions for these special numbers 
of mesh points and has the advantage over Gauss elimination in that  it does not 
require the preeomputation and storage of the auxiliary vector co (see Varga 
[9, p. 1951). 

An interesting and quick method of solution has been suggested by O. Bune- 
man [11] for the case that  ~1"(0) is given and we have an open ended Neumann 
condition that  
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d~;'~ - e~ ~: = 0 ( y  = ~ ) .  (4) 
dy 

In this case tile equations (3) or their finite dift'ercnce a~taloguc may be factor. 
ized as follows: 

- = o ( y ) .  (~)  .... 

Introducing the auxiliary function ~e(y) defined by :: 

- ~ ( y ) ,  

we [lave 

d 

+ : (7> 

Applying the condition (4) to (7) we see that  ¢~:( ~ ) = 0. Integrating equa. : 
tion equation (6) inwards h'om infinity we see that  ~?(y) = 0 until the first 
charge is encountered, at say y = ~3. In practice therefore (6) is integrated onIy 

• • - - k  A from y = y to y = 0 y,eldmg .¢ (y) to ~k(0). Knowing the right-hand side 
equation (7) may be-integrated from y = 0 to y = ~) starting with the known ) 
value of 6~(0). ~ " " 1 I Ins techmqt e is known as the marching method and if the march 
is performed in the directions given with the factorization shown, there is no 
build-up of error due to the homogenous solutions of equations (6) and (7). 

Having obtained ~ ( y )  as the solution of equation (3) the potential ¢(y) is 
obtained by Fourier synthesis from equation (2). 

Due to tile reciprocity of the finite Fourier analysis and synthesis the progran~ 
for Fourier synthesis will have much in common if not all in common with the 
program for Fourier analysis. 

Summarizing we see that the solution is obtained in three stages: 
1. Fourier analysis of the charge distribution p(x, y) --~ ~(y). 
2. Solution of l~ independent sets of ordinary differential equations or~th¢ 

corresponding tridiagonal matrix equations ~k(y)-~ ~ ( y ) .  
3. Fourier synthesis of the potential distribution ~k(y) --~ ¢(x, y). 

2.3 Computer Time. On examining the number of computer operations: 
required to perform this calculation the method does not, at first sight, seem 
particularly attractive. This is mainly due to the time required to perform the 
analysis and synthesis, as may be seen if we consider the domain of the solution 
to be spanned by an (n × n) mesh. For stage 1, on each of the n lines of constant 
y, we must compute n Fourier components each of which require n operations 
giving a total of n 3 operations for the whole mesh. The solution of the n equations 
for one harmonic in stage 2 may be completed in the order of n operations giving 
a total of approximately n 2 operations for stage 2. Stage 3 of course also takes 

3 n operations. 

Here the intended meaning is a multiplication and the addition that usually aeco~" 
panics it. 



SOLUTION ()F POISSON'S EQUATION (;SING FOURII4R ANALYSIS 99 

As the conveational iterative methods will require of the order of 'n. e operations 
per iterations it seems that  the Fourier technique wilt only pay off if the mnnber 
of iterations required is considerably linger than n. In a step by step simulation, 
wt~en a good guess for the potential is available from the last time step, it, seems 
quite likely that satisfactory convergence can be obtained in less than n itera- 
~io~s (n is Vpically 50 to 100). In this ease no advantage has been obtained by 
the Fourier transformation and we have unnecessarily restricted ourselves to 
certain simple types of boundary conditions. 

2.4 SS~plification.s. Two further simpliiications are, however, available in 
the Fourier method which completely reverse the above assessment. In the first 
p!aee if a suitable mm~ber is chosen for n (such as 12, 24, 48) the symmetry in 
t}~e sine functions may be used to reduce the computing time for analysis and 
synthesis to about a tenth of the original estimate (see sect. 9(b)) .  lCurthermore 
the two-cyclic nature of the finite difference equations allows one to replace the 
0riginal n ~ equations involving all the points in the mesh to a set of n~/2 slightly 
more complex equations involving only the points on the even lines of tile mesh, 
This process known as cyclic-reduction may be done at the start and fortunately 
gives a set of revised equations which lnay also be solved by the Fourier method. 
The Fourier analysis and synthesis is then performed on only half the number of 
lii~es and computing time is reduced. TILe solution is completed by solving for 
the potential on tile odd lines of the mesh directly from the known solution on 
the even lines. We have Galled this process odd/even reduction (see Section 4). 

2.50peration,s and Storage. TILe Fourier method as described above applied 
to (x, y) geometry can solve Poisson's equation on a (48 X 48) mesh in 0.9 
second with an error of about 10 -~. This time corresponds to about 10 computer 
operations per mesh point and if it is estimated that an iterative method will 
require at least 2 operations per point per iteration, we can see that an iterative 
method would have to converge in 5 iterations or less for it to be faster. It is 
hardly credible that any iterative method can achieve this. 

Throughout the calculation new results may overwrite old and the storage 
required is very little more than the original mesh ~t n 2 points. With the aid of 
the results of Section 9 we can extend the comparison made by Lynch in [8] of 
the total number of arithmetic operations required to solve Poisson's equation 
on an (N X N) mesh: 

SOR Teasor Producl A D[ Fourier 

14Na log N 4N a 40N ~ log ~ N Na/18 + 15.5N ~ 

On the basis of these estimates the Fourier method when applicable is always 
superior to SOR and the Tensor produet methods and is superior to ADI for 
N < 10,000 which includes all practical cases that can be solved on present da b, 
machines. 

2.6 Other Geometries. (x, y) geometry is not always very realistic as it implies 
the existence of an infinite system in the z-dimension. For many applications 
axially symmetric geometry on (r, z) coordinates is more appropriate. The 
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Fourier method may be applied in these coordinates as described above if 
Fourier analysis is performed in the z-direction arid the only change is that  the 
tridiagonal system of equations in stage 2 now has variable eoeffieients. Th~ 
cyclic reduction method is not suitable for such equatons but  the Gauss elimina- 
tion method is as efficier~t in radial coordinates as in the x-coordinates. Thus if 
the z-direction is the shortest there is rio change in computing speed due to the 
change in the coordinate system. However if the z-direction is the largest, as it 
frequently will be in electron tube work, the computing time will be irmreased 
and the alternative of performing a Bessel analysis and synthesis ha the shorter 
r-direction must be considered. The Fourier method with Bessel analysis pro- 
ceeds in 3 stages as before, however there is no symmetry in the Bessel analysis 
and the reduction of the number of operations by a factor of about 10 eanno! 
be achieved as it could in the ease of Fourier analysis. The odd/even reduction, 
however, may be performed as before. For z long enough a Bessel analysis in the 
shorter r-direction will be beneficial. Preliminary estimates suggest tha t  Bessd 
analysis should only be performed if (z /r )  is greater than about 10. 

2.7 Generalization. The basic principle of the Fourier method is the expan. 
sion of the solution in terms of the eigenfunetions of the Laplace operator for the 
problem. This principle can be applied in general to block matrices with com- 
muting blocks and shows to its best advantage if the eigenfunetions of the blocks 
are sines and cosines. This situation does arise it1 the finite difference form e f 
certain common linear partial differential equations and these are discussed 
in Section 11. 

The Fourier me~hod has also been successfully used in the transient study o:f 
the Magnetron by Yu, Kooyers and Buneman [10] using a (48 X 96) mesll 
and by Buneman arid Wadhwa [11] in an ion gun problem using a (24 X 100) 
mesh. 

3. The (48 X 48) Plasma Problem 

Considering now, in detail, the application of tile Fourier method to a wax- ~ 
ticulm' situation arising in a plasma study which uses a (48 N 48) mesh, we l 
report on the measured speed and accuracy of the solution. The boundary con- 
ditions being periodic are slightly different from the problem discussed in Section 
2 but the principle of the method is unchanged. 

Consider a square region in (x, y) geometry covered by a square 48 N 48 
mesh, with the boundary condition that  the solution be periodically repeated in 
both the x- and y-directions. :~ 

Using the usual 5-point difference approximation, Poisson's equation may be 
written in finite difference form as 

q~-ni + qS~+~.j + ¢~,i-~ + ~,J+* - 44~,j = q~, i  ( i , j  = 0, 1, . . -  , 47) (8) 

where q%. is the potential at the (i, j )  node of the mesh and q~,i is the charge 

3 In order for the potential ~o be doubly periodic it is nceessary for the total charge in 
the repeat square to be zero. We assume this to be the case. 
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i = ~ - -  

? 

0 
0 i= 47 

a) BEFORE 
ODD/EVEN REDUCTION 

i\@:Z2 
i= 47 1 k= 48 

b) AFTER c) AFTER 
ODD/EVEN REDUCTION FOURIER ANALYSIS 

d) AFTER e) SOLUTION ON 
FOURIER SYNTHESIS ODD LINES 

Fro. I 

associated with the (i, j )  node of the mesh. The mesh numbering and blterac- 
action module for this approximation is shown in Figure la. 

The boundary conditions are 

~i+48k,j÷48k = ~ i , # ,  q,z+48k,j+481~ == q l , j  (9) 

matrix form as follows: 

(i '° 
A I ~ ~,o qo 

B +  = " . .  0 ~ = q l  

I A I ] \ * ( 4 v ) /  (47) 

0 . . .  0 I 

(10) 

where 

I ~o~ \ I qo, \ 
?~j = ( ¢lj ) ,  q/ = ~ ql/ ) (11) 

where k is any integer. 
A convenient way of including these boundary conditions is to state that all 

indices are to be interpreted modulo 48, and this is assumed throughout tile rest 
of this paper. 

The equations (8) with boundary conditions (9) may be written in block 
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- -  4 1 0 - • . 0 1 / 

:t - -4 I 0 [ 

0 i l 
: o {  
0 1 - -  4 1 I 

1 o . . .  o 1 --4J 

(12) 

4. Odd/Even Reduction 

The first step in the solution of equation (10) for the urd~nown potential on 
48 lines of the mesh :is the reduction of the problem to the solution of 24 more 
complicated equations fox' the unknown potential on the even numbered lines 
of the mesh only. After solving for the potentiM on the even lines the potential 
on t, he odd lines is obtained by exact interpolation as described in Section 8. 

Conskler three neighboring equations from the ma.trix equation (10): 

+i-2  + A +j - ,  + e~j = q,_~ 

e~_~ + A $/ + d~j,+l = q j  (13) 

fox, j = 0, 2, 4, . . - ,  46 witt~ the indices interpreted modulo 48. By nmltiplying 
the second equation (llt the left by - A  and adding we obtain 

+i-z + (21 -- A2)Oj  + +j+2 = qi-I -- A q j  -4- qj+l 
(14) 

( j  = 0, 2, . . .  , 46). 

The equations (14) are 24 equations for the even lines with a 7 point interaction 
module as shown in ]i'igurc lb. In expanded form they are 

qgi,j--2 - -  ¢i--2,j  + 8C~i-.t,j - -  16,~i,j  -~ 8gag+l,] - -  qSi+2,j *JF (~i,j+2 

= q<J-...1 --  qi-l,y + 4qi,] -- q.~+l,j + q<j+l. 

5. Fowrier Analysis  

To solve equation (14) we first form a modified charge distribution on the 
even lines defined by 

qi = qi-~ - Aq5 + qJ+~ (j  = 0 ,2 ,  -- .  ,46) ,  (15) 

wMch in expanded form is 

* I~  = 0, 1, . . .  , 47, 
qi,j = q~.j-1 -- qi-l,j  + 4q~,3 -- q~+,,j + qi,j+l ,~ O, 2, , 46. (16) 

From the point of view of machine storage the modified chm'ge density on the 
even lines may overwrite the original charge density as it is formed. 

Next the potential mid charge distribution are expanded in Fourier components 
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as follows: 

--,~ -~ ~ ~ ~ 2~-I,'i +-.~ . 2~rt, e~,~ = :~ ~,0,~ + :~ ~4,~( - 1 + .=_ ~:,~ cos ~ -  +~.~ sm <~g-.) 

where 

2 ~ 2~ki '2 ~ 27rki 
= ¢ ~ , j c o s  ........... , 3 ; , j  = ¢ ,  sit1 ........... 

i=0 " 

with analogous expressions for * -"* 
The sine 8nd cosine %nctions satisfy the orthogonality relations: 

47 2~rki 2~rli 48 
cos cos = ~ - -  (1,:, l = 1 , 2 , . . .  23) 

~=o ~ -i-S- 2 

47 27rki 27rti 
cos cos = ~.z48 (k = l =  0 o r 2 4 )  

~v 2rrki 2~rli 48 
sin sir~ = ~a - -  (k, l = 1, 2, - .- 2:3) 

472rrki2~rt is ia  cos - ~  = 0 {]i = 1 ' 2 ' ' ' ' ' 2 3  
• i = o  ~ -  ~ O, I, ,24. 

(19) 

Substituting the expansion (17) into (14) and using the orthogonality relations 
(19) we get the finite Fourier transform of equation (ii4) 

& , j - 2  + x~=~k,j + & , j + ~  -*  = q~,j ( 2 0 )  

where 6 and q* refer to either the sirie or cosine harmonic and 

Xk= --2 8-8cos5i~-8-  + c ° s  4 8 / "  (2l)  

Noting that, because the chosen sines arid cosines are the eigenfunctions of the 
matrix A, the equations (20) are 48 independent sets of 24 equations, one set for 
each of the 48 harmonic amplitudes. 

The Fourier transform of the modified charge distribution on the even lines, 
qk.j, may overwrite the modified charge density on these lines. The storage 
layout arid resulting interaction module is shown in Figure lc. 

6. Recursive Cyclic Reduction 
The set of 24 equations for any of the 48 harmonic amplitudes may be written 

q~i-2 + XCj+¢i+~ = qJ (j  = 0 , 2 , . . .  ,46) (22) 

where tile bar, star and constant subscript k have been dropped for brevity. 
These equations form a tridiagonal system with periodic boundary conditions 
and a particularly efficient method of solution has been devised in collaboration 
with Dr. G. Golub. This involves the recursive application of the process of 
cyclic reduction which follows. 
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Equatior~ (22) is identical in form to equation (10) except that the matrix A 
is replaced by the scalar X and the subscript advances in steps of 2 instead of 1. 

The process of reducing the number of equations by half as described in equa- 
tions (13) and (14) may now be similarly applied, leading to 12 equations linking 
every fourth line, namely: 

¢j_22 + X(gsCj + Cj+e~ = q}2) (j = 0, 4, .*. , 44) (23) 

where 

X (2) = 2 --  X 2, q~.2) = q i - 2  - -  X q j  + qj+2.  (24) 

The 12 equations (23) are of identical form to the equations (22) but with a 
modified right-hand side, qi, and central coefficient, X, as given by equation (24). 
The quantity q}~) may, for storage economy, overwrite the q0, q4, qs "'" q44, 
while q2, q6, q~0 • " " q46 are kept unchanged in their location. 

The process of reduction may therefore be carried out recursively until a small 
number of equations are obtained which are solved directly. 

If we let t be the depth of the reeursion the recurrence formulas become 

¢~_~, + X ( t ) ¢ j + ¢ ¢ + 2 t  = q~t) ( j  = 0 , 2  t , . - . ,  ( 4 8 - -  2 ' ) )  (25)  

where 

with 

X ('+~) = 2 - (X"~) ~ 
q~t+~) ~ ( 0  (0  ~.(t) ~ ( t )  

• = q j - 2 t  - -  X qY + ( t j+2t  

(26) 

}t (1) : 

Three applications of the reduction process leave us with 3 equations for ¢0, 
¢1~ and ¢~2 which cannot be further reduced, namely: 

/ xa) 1 : ) ( ¢ °  / / q°(4)\ 

C 0 = I 1 1  X (4) 4,,, = [ q ~ 6 4 ) ~ = q  • (28) 

The eigenvalues, m,  and vectors, u~ of the matrix C are known: 

ul '  = (1,  1, 1 , ) ,  ~1 = 2 + X (4) 

I = : X(4) 
us (i, --2, 1), m -- 1 (29) 

us (1,  0, - - 1 ) ,  m -- 1 

where the prime denotes transpose. 
Expanding the solution in terms of the eigenvectors, 

0 = a l u l  + a2u~ + a3u3 (30 )  
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the~l 

arid 

C~ -- q = cq/ului + ~2/au2 + a;~aua 

, q~4) (4) (4) u , ' q  +q16 +qa2 

al - - 3(Xa ) u ( ' m  + 2) 
u 2 '  " q  q~4) ,~ (4) (4) - -  z q t 6  + qa.z 

a2 - , 6(X (4) 1) U2 • U2  

u a ' q  _ q ~ 4 ) _ q } , ~ )  
Cg3 - -  ! 

u3 "m 2(X a) - 1) 

~ubstltut rig equations (32) into (30) we get the solution 

¢:6 = ~el - 2 a 2  + aa 

¢32 -~ ,EEl - -  Ot{3. 

(3 t ) 

(32) 

(an) 

In order to find the other values of ¢ we calculate intermediate values re- 
cursively. First determining ¢s, ¢24, ¢40 then ¢4, ¢12,6~0, ¢2s, ¢:;6, ¢4.~, etc. from 
the relation 

1 
cJ = x ~  { q } ' '  - 4,s-~, - CJ+,~} (34)  

for t = a, 2, 1 arid for j = 2' step f + l  until (48 - T )  where all the quantities 
on the right-hand side of equation (34) are known. 

Tile process of cyclic reduction described here is essentially a floating-point 
algorithm due to the fact that  the magnitude of X ") can grow very quickly 
particularly for the higher harmonies. Consider for example the harmonic wXh 
k = 24, when 

x ~  ~ = - 1 . 1 5 4  
(a5) 

x ~  ) = - 1 . a n  x 1 ¢  

X~{ ) = --1.77 X 10 t~. 

This might be thought  of as a disadvantage, bringing as it does the danger of 
maehh,e overflow. In  fact the phenomonon may be turned to advantage on a 
floating-point machine by noticing that  if, at any level of the reduction, X (° > 10" 
and we are only interested in eomputing with a precision of 1 par t  in 10"] then 
equation (25) may be written 

X"~¢~ = q} ~) (36) 
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for j = 0 step 2 e until (48 - f )  where the first and third terms of the left-ha~l~ 
side have been neglected in comparison with the second. 

Thus the solution 4J at the tth level ca~ be determined by  sir~ple division fr0r; 

equation (37) 

(t) 

and calculation of i~termediatc values started immediately. 
An alternal~ive scaling of the cycle reduction method can be made ir~ which 

numbers deerease ir~ magnitude and which is therefore suitable for a fixed-p0i~i 
machine. However it appears that  an extra multiplication is introduced. 

7. Solution on the Even Lines 

The solution of the equations (22) by the technique of reem'sive cyclic red~e 
tion has determined the values of all 48 harmonic amplitudes on the 24 e v e n  line~ 
of the mesh. The solution on the even lines is found by the process of Fouriel 
synthesis using equation (17), and the stage indicated by Figure ld  is reaehd 

8. Solution on the Odd Lines 

The solution for the potential on the odd lines can be found from equat ion (13) 

d ~ j  = qi  -- ~s-1 -- .6j+1 (aS: 

for j = 1 step 2 until 47 where the potential vectors on the right-hand s ide  an 
the kllown values on the even lines. 

The equation (38) is a tridiagonal system with periodic boundaw eonditi0nl 
and again is most conveniently solved by recursive cyclic reduction, startint 
from the expanded form of equation (38) 

¢',:+~,i - 4 ¢ < +  + ~ . + ~ , j  = q~ , j  - ¢ ~ , s - ~  - ¢~ ,J+~  (391 

for j = 1 step 2 until 47, for i = 0 step 1 until 47. 

9. Operation Count and Speed 

In order to get more general formulas for the number of operations we eonsi& 
an (n X m) mesh where the Fourier analysis is performed in the n-directi0n 
The number of operations for the different stages of' the calculation are as follo~vs 

(a) Form mo&~ied charge density on even lines. According to equat ion (16 
this takes 5 additions per poiut. 4 There are n points per line and m/2 lines there 
fore a total of 

4 The multiplication by 4 is an addition into the exponent of ~ flooring-point numbel 
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n ×-~  X 5 = 2 )nm additions 
(40) 

0 multiplications 

(b) Fourier analysis of the *no&fled charge on even lines. According to equa- 
tion (18) Fourier anMysis would require n multiplications and n additions per 
harmonic per line. There are n harmonics and m/2 lines therefore without any 
simplification we get a total of 

2 

n X n X - m additions 
2 2 

(41) 
n 
-b£ m multiplications 

If however we make use of the symmetry of the sines and cosines, grouping 
and adding together all terms multiplied by the same factor, before performing 
the multiplication, the number of operations can be drastically reduced. See for 
example Whittaker and Robinson [3] who give a formulation for n = 12 and 24. 
These techniques can be extended generally to n = 12 X 2 q, where q is an integer 
equal to or greater than 1, and an ALGOL program has been written and tested 
for this case. 

The number of operations in this program has been counted as a function of n 
and fitted empirically as follows: 

2 
n 
3--6 + 5.7n additions 

n 2 
3-6 -t- 0.6n multiplications. 

These formulas are asymptotically correct for large n, are correct to within 3 
percent for q ~ 3 and overestimate the total number of operations by 24 percent 
and 8 percent for q = 1 and 2, respectively. 

Using these results we obtMn for step (b) 
2 

n ~ q- 2.85nm additions 
72 

(42) 
n m + 0.3nm multiplications. 
72 

(e) Solution of harmonic amplitudes of potential on even lines. For a line of 
points 48 long, equations (27) and (34) show the operational counts for the 
process of cyclic reduction to be 2 X 95 additions and 94 multiplications. 

ht general we may say for a line q points long, cyclic reduction takes 
(43) 

4 X q additions and 2 X q multiplications. 
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In the determination of the harmonic amplitudes at this stage there are n tri. 
diagonal systems to be solved each m / 2  long. The total count is therefore 

m 
4 X n X ~ = 2nm additions 

m 
2 X n X ~ = n m  multiplications. 

(d) Fourier synthesis. The Fom'ier synthesis required to obtain the p0. 
teatial from the harmonic amplitudes of potential via equation (17) can b~ : 
simplified by grouping of terms to the same number of operations as for Fourier 
analysis in step (b) giving a further 

n~m 
- - -  + 2.85nm additions 
72 

(45) 
n2m 
- -  q- 0.3nm multiplications. 
72 

(e) Solution on odd lines. :~,~i,'st we forn~ the r ight-ha ,a  side of equation (38) 
for all points on the odd lines. There a r e  n × m/2 such points giving 2 X (nm)/2 
= nm additions. 

Next the tridiagonal system of equation (38) is solved by reeursivc cyclic re- 
duction. There are . , / 2  such systems each n equation long. Using the results of 
(c) we have for the solution of these equations 

m 
4 X n X ~ = 2nm additions 

m 
2 X n X ~ = nm nmltiplieations. 

The total number of operations for stage (e) is therefore 

3nm additions 

or in total 

Throughout the process 
only one mesh of (n X m) 

il 

(46> i i 
ii 

(47) 
multiplications. 

The number of operations for the solutior~ of 

n ~ n  

Total operations and storage. 
Poisson's equation given a right-hand side is therefore 

2 
n n_~ + 13.2nm additions 
36 

and n n_~ + 2.3nm multiplications (4S) 
36 

i 

n m 
1--8- q- 15.5nm arithmetic operations 

new results ,nay overwrite old and we need basically 
storage locations. These originally contain the charge 
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S1uge 

--- 

a 

b 

C 

d 

e 

Additiom 

2$m 

i 

7L%L/72 

+2.85nm 

2nm 

c 

n2m/72 
+2.85nm 

3nm 

- 

-- 

TABLE 1. IBM 7090 

lislimated 
time (set) 

~___ 
0.086 

0.121 

0.069 

0.121 

0.103 

Multiplications 

Solut.ion of Poisson’s equation on 48 X 48 mesh = 

Additions Estimated 
time 

a 2&m 0.035 0 

b r n2m/72 nm2/72 
+2.85nm 0.049 

+0.3nm 

c inm / 0.028 
I 
nm 

d 
i 

r&-n/72 
0.049 

i 

nm2/72 
+2.85nm +O. 3nm 

e 3nm 0.041 nm 

-_ 

Eslimaled 
time (SIG) 

TABLE 2. IBM 7094 

0 

0.056 

0.058 

0.056 

0.058 

Estinmted Total estimated 
lime time 

0 0.035 

0.022 0.071 

0.023 0.051 

0.022 0.071 

0.023 0.064 
- 

Solution of Poisson’s equation on (48 X 48) mesh = 0.292 

- 

TABLE 3 

0.127 0.168 

0.177 0.230 

0.161 0.189 

0.728 0.906 

- 

- 

- 

alachine Addition MultifiZlication 

IBM 7090 15 psec 25 /.tsec 
IBM 7094 6 psec 10 psec 

Tk? 

0.362 

distribution which is overwritten by the Fourier transform of the charge, which 

is overwritten by the Fourier transform of the potential, which is finally over- 
written by the potential solution. 

The only other storage required is for the Fourier harmonics themselves. In 

general there would be (n X n) numbers describing the shape of the n harmonics 
however due to the symmetry of the sines and cosines only n/4 distinct numbers 
occur. The total date storage is therefore (n X m + n/4). 

Tables 1 and 2 show the estimated times for each stage in the process using the 
operation counts above for the IBM 7090 and 7094, together with the measured 
time on the 7090. 

For the purpose of estimation we have used the speeds in Table 3 for the 
floating-point operations. The measured time is taken from a floating-point 
symbolic FAP program. Due to the large number of additions some increase in 
speed could be obtained by programming in fixed point. 
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The difference between the measured and estimated times of about 24%i 
accounted for by computer housekeeping operations. Using this factor on t]l 
7094 estimated figure we obtain 0.362 seconds as a realistic estimate for the tinl 
of solution on the 7094. It is interesting to note from Table 1 that  two frequent.! 
repeated generalizations are untrue. I t  is not even approximately true, for e.1 
ample, that  additions may be neglected compared with multiplications, becaui 
in each stage of the process the time spent on additions is in fact greater tha 
the time spent on multiplications. I t  is also untrue that  it is satisfaetory i 
consider only the highest power of n for in this case the time spent compmin 
operations proportional to n2m is less than the time spent on stages with oper~ 
tions proportional to rim. 

10. Accuracy 

The accuracy of the method has been examined by testing its ability to l~ 
produce a given random distribution of potential. 

We start by generating a random distribution of potential, ,~*, on the poin 
of the mesh. Next the charge distribution, q, which corresponds exactly to ¢* 
computed from equation (8) namely 

ql,y = ¢i-- l , j  -~ ¢ i+l , j  -~- el,j--1 -~- ¢i , j+l - -  Oi , j .  (4! 

The Fourier technique was then used to derive a potential distribution, q 
from the charge distribution q~j, and the exact distribution q~* and the soluti( 
¢ were examined. 

The random distribution generated varied between -½ and + ½ and the large 
value of the error, (4,* - ¢), obtained with seven different distributions wl 
3.3 × 10 -7. 

11. Solutian of Other Differential Equations 

Consider the general matrix equations 

B 6  = q (5(  

where B is partitioned into (m X m) square blocks B~j of size (n X m). ~ a~ 
q are partitioned into (m X 1) vectors #j of length (n X 1). 

/ / (i) 
B 2t  B22 • ~2  q2  

B = • , ~ = . , q = . (5  

\ B m l  "'" B m m /  \ ~ m /  

Such a system of partitioned equations naturally arises in the finite differen 
form of a two-dimensional partial differential equation, when the mesh is co: 
fined to a rectangular region with m lines each containing n mesh points. 

The Fourier technique in general can be applied to the solution of equati( 
(51) provided each submatrix B~/has the same eigenvectors. In this case tl 
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t:ourier analysis attd synthesis stages are performed using these eigenveetors. If 
equation (51) is to be solved only once the necessary deterlnhtation of the eigen- 
vectors will probably make the method unprofitable. If, however, equation (51) 
is W be solved repeatedly for different right-haI~d sides, as may occur in a t,~an- 
sicnt problem, the solution for the eigenveetors need be done once only at the 
beghming. Even so, the method will not show to its full advantage ur~less the 
eigenvectors are shins and eosiues when the special techniques for Fourier analysis 
discussed in Section 9b can be used. 

Fortunately a large class of linear difl'erential equations have this property 
a~d we now restrict the discussion to these. 

The finite difference form of a linear partial differential equation at. the point 
(i,j) on a mesh can be written in general as 

l , m = ~ p  

where the coefficients at .... are those appearing in the interaction module and in 
ge~eral are functions of i and j.  

The equations will be of the desired form if: 
1. The coefficients az.,~ are independent of one index, say i which runs from 

0 to n. 
2. The coefficients have reflective symmetry with respect to this index, i.e., 

(ll,.~ = a - l , m  • 

:~. The boundary conditions can be expressed by defining ¢~,~ if i < 0 as follows: 

¢-~,~ = -4~.: The zero value case 

or ¢_~,: = +¢ , , j  The zetv slope ease (53) 

or 4-~,i = ~,,-~,~ The periodic case 

ai~d similarly at the other boundary when i > n. 
Ia terms of the original partial differential these conditions correspond to: 
I. The coefficients are independent of one variable, say z. 
2. The x derivatives appear only to an even order. 
3. The boundatT conditions are specified on a rectangle 0 N x N l~, 0 N y N 1,~ 

a~ld are of the form 

0 ¢ _  0 or ~b= 0 along x = 0 
Ox (54) 

04~_ 0 or 4~= 0 Mong x = 11 
Ox 

or the periodic condition ,~(x, y) = ¢(x  + It,  y). 
4. In the y-direction there is more freedom: 

al(:c) ~ + bl(x) = cl(z) 

as(x) 0¢ + b~(x) = c~(x) 

along y = 0 

along y = 12 

(55) 
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a(x) ~ + b(x) ~(y) = c(x) 

/ ~  = 0  

FOURIER ANALYSIS 
Fro. 2. Problems most suitable for Fourier method: (a) Rectangular region, (b) sh] 

type property changes C), (@ etc., (c) simple boundary conditions, (d) uniform mesh~; 
least in analysis direction, (e) typical equation VD(y)Vc~(x, y) ~ ,~2(y)¢(x, y) = S(x, ~] 

or the periodic condition ¢(x, y) = ¢(x + 12, y). 
In this case a uniform mesh would be used in the x-dh'ection and the Fouric 

method would be applied by performing the analysis and synthesis also in thi 
direction. 

An example of an equation satisfying these conditions is the anisotropie di] 
fusion equation in (x, y) or (r, z) coordinates, with Fourier analysis in the 
and z-directions respectively: 

02¢ 0 D,/y) 0¢ D~(y) ~ + ~ ~ + Ic2(y)4~ = s(x, y), 

(5~ 

Oz --~ + r - D~(r) + /c2(r)~ = s(r, z). 

Laplace's, Poisson's and Helmholtz equations are special cases of this equatio~ 
Both the five- and nine-point interaction modules for the Lapl~cian and th 

25-pohlt module [4] for the biharmonic equation V4¢ = 0 have the required rt 
flective symmletry of the interaction coefficients and may also be solved by th 
Fourier method. Figure 2 shows diagrammatically the types of problem roof 
suitable for solution by the Fourier method. 

The Fourier method, providing as it does a fast method for the solution < 
Poisson's equatioa over a rectangle, can be used as the basis for various bloc 
iterative schemes for more complex regions that  can be divided up into rectanglei 
One could consider for example a block 48-line iteration analogous to the bloc 
1dine and 2-line methods [5]. 

12. Conclusion 

For the special problems hlvolving (x, y) geometlT in the rectangle for whiC 
the Fourier method is well suited there seems little doubt that  it is a faste 
method of calculation than any direct or iterative method so far suggested. 
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1:or other problems where the  method  can be applied bu t  is not  well suited 
the position is less clear and we will have  to await the results of practical numeri- 
cal experiments before the fastest method  can be chosen. 
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