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Abstract.  The demand for rapid proccdures to solve Poisson’s equation has led to the
development of a direct method of solution invelving Fourier analysis which can solve
Poissan’s equation in a square region covered by a 48 X 48 mesh in 0.9 seconds on the ITBM
7000. This compares favorably with the best iterative methods which would require about
10 seconds to solve the same problem.

The method i3 applicable Lo rectangular regions with simple boundary conditions and
the maximum observed error in the potential for several random charge distributions is
3% 1077 of the maximum potential change in the region.

L. Introduction

In many engineering problems conceruing plasmus, electron tubes and ion
guns, it 1s desived to follow the motion of numerous electrostatically inieracting
charged particles in twao dimensions. If the region invalved is divided into a large
number of eells, and the velocity and position of each charged particle is re-
eorded, then this simulation of space charge flow may he performed stepwise in
time as follows:

L. Charge Distribution. At the beginning of each time step the position of cach
particle is examined and the charge of each particle is associated with the center
of the cell in which the particle resides.

2. Polential. The charge distribution found in step 1 is used as the souree
term or right-hand side of Polsson’s equation, the solution of which gives the
clectrostatic potential in the region.

3. Acceleration. 'The potential distribution found in step 2 is differenced to
give an approximation to the electrostatic field acting on ecach particle. This
ileld is then allowed to accelerate cach particle individually for a short time inter-
val. The now position and veloeity of cach particle is recorded and the cyele
repeats at step 1. The deseription is thus analogous to the projection of a motion
pleture.

For such a simulation to be useful it is necessary to follow several thousand
particles through several hundred time-steps and this weans that the overall
eyele time aust be reduced to & few seconds or less.

The acceleration of ull the particles is a simple caleulation and can be per-
formed in about & second on the IBM 7090.1 The solution of Poisson’s partial
differential equation in step 2 is more diffieult but it is clear that the solution
raust be obtained in about the same time if the simulation is to be useful.

Hitherto the tendency has been to use iterative methods to solve such an el-

* Computation Center.
! Computation simes given in this paper will be for this machine except where specified.
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liptic equativn. Theoretical estimates of the computing time for the best ilerative
methods, namely the two-line eyelie Chebyshev (2LCC) and Alternating Direc.
tion Implicite {ADI) methods, bave been made which compare well with the ex-
perimenial results of Hagsman [1] and Price and Varga [2].

These lead to solution times of 10, 30 and 60 seconds respectively for ADI,
2LCC and SOR methods when applied to a 48 X 48 square mesh and an error
reduction of 10-%

These solution times arc thus roughly 10 times too slow for this application,

The iterative methods of solution named above are very general and can be -
used to solve Poisson’s equation in systems with complicated electrode shapes !
and houndary eonditions. In plasma applications however, where the behavior of |
the space charge distribution is of primary lmportance, it is often permissible to -
simplify the boundary conditions in order to obtain a faster solution.

In this paper we describe an alternative direct method of solution which takes -
advantage of this simpfification, is applicable to a certain class of important
problems, and is 10 times faster than the best leralive methods so far reported.

2. Molivation and Discussion

The problem to he discussed here ig the solufion of Poisson’s equalion in a
rectangular domain where the boundary conditions are given on the perimeter of
the domain only. The boundary conditions may be Dirichlet, Neumann or
periodic (combination being permitted provided that the same type of condition
pertains along the total length of any side). The method shows to best advantage
in (z, ¥} cordinates. Thus woe consider this case, taking the boundary conditions
o be zero potential around the perimeter.

We have

l
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2.1 Fourier Analysis. The boundary conditions allow ¢(z, ) to be expanded
in & Fourier series in either the z-dircetion, y-direction or as & double Fourier series
in both directions. A double Fourier expansion was suggested as long ago as 1952
by Hyman [7] and is essentially the method of Tensor Products, reported re-
cently by Lynch et al (8]. However the determination of Fourier coefficients is a
time consuming job on a computer and we have found that the fastest computer
program is obtained if we expand in only one direction and choose this to be
shortest. Let this be the z-direction then the expansion is

9(z,y) = 2 #y) sinf;ix (2)
and similarly for p(z, y) where ¢*(y) is the Fourier amplitude of the kth har-

monic.
On substituting (2) into the partial differential equation (1) and using the
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orthogonal properties of the sine functions we obtaln a set of ordinary differential
equations relating the Fourier araplitudes of oz, ») and pla, o)

FEECN AL .
el (1) #(y) = 5*(y). )

dy? I

A single Fourier analysis has also been considered by Bickley and MeNamee
121,

In the continuous case an infinite number of harmonic anplitudes are re-
quired in the representation of ¢(x, y). However when performing the finite
analogue of the expansion (2) to express the value of ¢(z, ¥) at a diserebe num-
ber of mesh points only, we find the number of harmonies required for the
exact representation of the mesh function is equal to the number of mesh points
(see for example Jeffreys and Jeffreys [6, par. 14.017).

Due to the fact that the sme functions satisfy the boundary conditions and
are the eigenfunctions of the differential operator in equation (1), the ordinacy
differential equations (3) for cach harmonic are independent of each other.
This change of a partial differential cquation into a set of independent ordinary
differential equations is the first erueial simplification of the method. It can only
be carried out in certain simple geometfrical situations when, for example, the
external boundaries are parallel to the coordinate axes and the boundary condi-
tions are of the type mentioned above, The presence of any internal conductors
for example immediately couples the harmonics in equation (3) and makes
the method as it stands impractical. However a modification of this direct
method is being investigated which will allow the inclusion of interior boundaries
and is suitable for cases whoere Poisson’s equation is to be solved repeatedly for
different space charge distributions but with fixed interior electrode surfaces.

22 Tridiagonal Systems. The ordinary differential equations {3}, which in
the finite analogue become a tridiagonal matrix equation, can be solved in o
variety of ways. Our experience has been that the best technigue depends on the
boundary conditions impaosed.

In the case that the potential and therefore #"(y) has prescribed values at y =
0, w the method of Gauss elimination in the neat form as given by Varga [4]
and others is suitable and may be used for any number of mesh points. Gauss
elimination is an inefficient method to use if the boundary conditions are periodie,
and a new technique of “recursive eyelic reduction” has been developed for this
ease which is particularly neat if the nuwber of mesh points is of the form 27 or
3 X 2% {see Section 6). This does not seern. to be a severe restriction considering
the resulting increasc in computing speed. Indeed recursive cyclie reduction
may be applied to the Dirichlet boundary eonditions for these special nambers
of mesh points and has the advantage over Gauss elimination in that it does not
require the precomputation and storage of the auxiliary vector o (sce Varga
{9, p. 1957).

An interesting and quick method of solution has been suggested by O. Bune-
man [11] for the case that ¢°(0) is given and we have an open ended Neumann
condition that
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(13 T . \
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In this case the equations (3) or their finite difference analogue may be factor

ized as follows:
(d .
<Ldz/ ( )} It7 ( )} Sl =7, @

Tntroducing the auxiliary funetion ¢°(y) defined by

2 - (B - s, (@
s (B dw - v, a

W

we have

Applying the condition (4) to (7) we see that ¢"( ) = 0. Integrating equa.
tion equation (6) inwards from infinity we see that ¢*(y) = 0 until the first
charge is encountered, at gay y = §, In practice therefore (6) iz integrated only
from y = 9 to y = 0 yielding #*(f) to ¢*(0). Knowing the right-hand side
equation (7) may be integrated from = 0 to y = # starting with the knows
value of ¢°(0), This technique is known as the marching method and if the mareh
is performed in the directions given with the factorization shown, there is m
build-up of error due to the homogenous solutions of equations (6) and (7).

Having obtained ¢°(y) as the solution of equation (3) the potential ¢(y) &
obtained by [Pourier synthesis from equation (2).

Due to the reciprocity of the finite IFourier analysis and synthesis the program
for FFourier synthesis will have much in common if not all in eommon with the
program for Fourier analysis.

Sumimarizing we see that the solution is obtained in three stages:

1. Fourier analysis of the charge distribution p(e, y) — 5 (¥).

2. BSolution of & lndependent sets of ordinary differential eguations orthe
corresponding tridiagonal matrix equations 3°(y) — &°(¢).

3. Fourier synthesis of the potential distribution ¢*(y) — & (=, 7).

2.3 Computer Time. On examining the number of computer opera,timﬁ3
required to perform this calculation the method does not, at first sight, seem
particularly attractive. This is mainly due to the time required to perform the
analysis and synthesis, as may be seen if we consider the domain of the solution
to be spanned by an (s X ») mesh. For stage 1, on each of the » lines of constant
y, we must compute n Fourier components each of which require n operations
giving & total of n’ operations for the whole mesh, The solution of the n equations
for one harmonie in stage 2 may be completed in the order of n operations giving
a total of approximately n® operations for stage 2. Stage 3 of course also takes
n® operations.

* Here the intended meaning is a multiplication and the addition that usually accom-
panies it.
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As the couventional Terative methods will vequire of the order of »° operations
per iterations it seems that the Fourier teshnique wili only pay off if the wumber
o iterations required s considerably larger than . In a step by step simulation,
when a good guess for the polential is available from the last time step, it scems
quite likely that satisfactory convergenee can be obtained in less than n itera-
tions (0 1s typically 50 to 100). In this case no advantage has been obtained by
the Fourier transformation and we have unnecessarily restricted ourselves to
cortain simple types of boundary conditions.

24 Simplifications. Two further simplifieations are, however, nvailable in
e Fourier method which eompletely reverse the above assessiment. In the first
place if a suitable number is chosen for a (such as 12, 24, 48) the synunetry in
the sine functiong may be used to reduce the computing time for analysis and
synthesis to about a tenth of the original estimate (see sect. Y(h)). Furthermore
the two-cyelic nature of the {inite difference cquations allows one to replace the
original n' equations invelving all the points in the mesh to a set of 11.9/2 shightly
more complex equations involving only the points on the even lines of the mesh,
This process known as cyclicreduction may be done at the start and fortunately
sives a gob of revised equations which may also be solved by the Fourier method,
The Fourier analysis and synthesis is then performed on only half the number of
fines and computing time is reduced. The solution is completed by selving for
the potential on the odd iines of the mesh directly from the known solution on
the even lines, We have called this process odd/even reduction {see Section 4).

2.8 Operations and Siorage. The Fourier method as deseribed above applied
to (2, y) geometry can solve Poisson’s equation on a (48 X 48) mesh in 0.9
geeond with an error of about 107°. This time corresponds to about 10 computer
operations per mesh point and if it s estimated that an iterative method will
require ut least 2 operations per point per iteration, we can see that an iterative
method would have to converge in 3 ilerations or less for it to be faster. Ii s
bardly credible thal any iterative method can achieve this.

Throughout the calculation new results may overwrite old and the storage
required is very little more than the original reesh at »’ points. With the aid of
the results of Section 9 we can extend the comparison made by Lynch in [8] of
the total number of arithmetic operations required to solve Poisson’s equation
voan (N X N) mesh:

SOR Tensor Produgt ADr Fourier
14N3 jog N 4773 40N log? N N3/18 + 15.5§

On the basis of these estimates the Fourier method when applicable is always
superior to SOR and the Tensor product methods and is superior to ADT for
N < 10,000 which includes all practical cases that can be solved on present day
machines,

2.6 Other Gemnelyies. (x, 1) geometry is not always very realistic as it implies
the existence of an infinite system in the z-dimension. For many applications
axially symunetric geometry on (7, z) coordinates is more appropriate. The
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Fourier method may be applied in these coordinates as deseribed above if gk
Fourier analysis is performed in the z-direction and the only change is that ¢k,
tridiagonal system of equations in stage 2 now has variable cocfficients, The
eyclic reduction method is not suitable for such cquatons but the Gauss eliming.
tion method is as efficient in radial coordinates as in the z-coordinates, Thyg 3
the z-direction is the shortest there is no change in computing speed due to the
change in the coordinate systern. However if the z-direetion is the largest, as it
frequently will be in electron tube work, the eomputing time will be inereaged
and the alternative of performing a Bessel analysis and synthesis in the shorter
r-dircetion rust be considered. The Fourier method with Bessel analysis pro.
ceeds in 3 stages as belore, however there is no syimmetry in the Bessel analysi:
and the reduction of the number of operations by a factor of about 10 cannet
be achieved as it could iu the case of Fourier analysis. The odd/even reduction,
however, may be performed as before. For z long enough a Bessel analysis in the
shorter r-direction will be beneficial. Preliminary cstimates suggest that DBessel
analysis should only be performed if (z/7) is greater than about 10.

2.7 Generalization. The basic prineiple of the Fourier method is the expan
gion of the solution in terms of the eigenfunctions of the Laplace operator for the
problem. This prineiple can be applied in general to block matrices with com-
muting blocks and shows to its best advantage if the eigenfunctions of the blocks
are sines and cosines. This situation does arise in the finite differcnee form of
certain commmon linear partial differential equations and these are diseussed
in Section 11.

The Fourier method has also been successfully used in the transient study of
the Magnetron by Yu, Kooyers and Buneman {10] using a (48 X 96) mesh
and by Buneman and Wadhwa [11] in an ion gun problem using a (24 X 160}
mesh,

3. The (48 X 48) Plasma Problem

Sonsidering now, in detail, the application of the Fourier method to a par
tieular situation arising in a plasma study which uses a (48 X 48) mesh, we
report on the measured speed and acouracy of the solution. The boundary con-
ditions being periodic are slightly different from the problem discussed in Section
2 hut the principle of the method is unchanged.

Consider a square region in {x, ¥) geometry covered by a square 48 X 48
mesh, with the boundary condition that the solution be periodically repeated in
both the z- and y-directions.”

Using the usual 3-point difference approximation, Poisson’s equation may be
written in [inite difference form as

brty b biprs b Do+ bign — A = qi; (4,5 = 0,1, ,47) (8]
where ¢;; is the potential at the (¢, /) node of the mesh and ¢ ; is the charge

3 In order for the potential to be doubly periodie it is neecssary for the total charge in
the repeat square to be zero. We assume this to be the cuse.



BOLTFPTON OF POISSON’S HQUATION USING FOURIER ANALYSIS 101

S F R W
poo T otmmTT T IR S IR
e T Il

o S
5 = 47 o i= 47 3 = 48

2) BEFORE bl AFTER o) AFTER
ODD/EVEN REDUCTION ODD/EVEN REDUCTION FOURIER ANALYSIS
i . e ;._P._ -
4 e
i e e
j: —— e
i
&) AFTER e} SOLUTION ON
FOURIER SYNTHES!S 00D LINES

Fra. 1

assaelated with the (4, 7) node of the mesh. The mesh numbering and interac-
action module for this approximation is shown in Figure 1a.
The boundary conditions are

Popagh, a8k = P, 0148k, 54486 = (4,7 {9}

where & is any integer.

A convenient way of including these boundary conditions is to state that all
indices are to be interpreted modulo 48, and this is assumed throughout the rest
of this paper.

The equations (8) with boundary conditions (9) may be written in block
matrix form as follows:

A T O 0 I
I 4 I E ‘t’U yo
Bo=1|: . 0fb o =1 m (10)
0 I A I [\oun G ery
I 0 0 7 A
where
o qos
T i TR (11)

Par, Fi 17,5
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and
(4 1 @ 01
| —4 1 U;
0 : : :
0 141 ;
L1 0 0 1 4]

4. Odd/ Fiven Reduction
The first step in the solution of equation (10) for the unknown potential gp
48 lines of the moesh is the reduction of the problem to the solution of 24 mor
complieated equations for the unknown potential on the even numbered line
of the mesh only. After solving for the potential en the even lines the potentis
on the odd lines i1s obtained by exact interpolation as described in Secetion 8.
Consider three neighboring equations from the matrix equation (10):
bro + A i1+ & = (1
i1+ A di 4 G = i (13)
G + A i+ b = i
forj = 0, 2,4, -, 46 with the indices interpreted modulo 48. By multiplying
the seeond eruation on the left by —A and adding we obtain
$ie + (21 — A7)0, + $is = qi0 — Az + qun (14
. )
(5=0,2, - -,46).

The equations (14) are 24 equations for the even lines with a 7 point, futeraction
module as shown in Figure 1b, In expanded form they arc
Gir v iny b B — WG o+ Bdi,; — Piia =+ b e

= (it — Gi-1,; T A — Gegrs T Giogp

5. Fourier Analysis
To solve equation (14) we first form a modified charge distribution on the
even lines defined by
Q" = q1 — Agi + qin (J=0,2--,46), (15
which in expanded form is
* , i=0,1, --,47 N
Qi = Giger = Gicrg + 405 = Qg 0 in {J _ 0: 2: :46? (16)

From the point of view of machine storage the modified charge density on the
even lines may overwrite the original charge density as it is formed.
Next the potential and charge distribution are expanded in Fourier components
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ns follows:

1 o 1 2 u} - f!\
i = m O T o e (—1Y -4 d S :',, Loy ;s :7:‘ 7
¢ 3 4G 51 4; E\(DM os T + $p 5 S0 18} {1
where
2 < Qaki o 3 Dl ,
Pryj = Ié = {f)?,f COs 7‘{5% r = 2_./ d’i il "1”- iy ‘g‘" {18)
with analogous expressions for 47, i% and anh
The sine and cosine functions satisfy the mLI wgonality relations:
Dk 2rlt 48
gs‘” (§ Wy T ey Uil= 1,2, 28)
QTrli
% cu': 08 - = 61048 (k=1="~0or24)
. (19)
R L 48 v
SiN e 8 e = Sy ] e 2 ... 93
2 sin - sin e = bu (k1= 1,2,--,23)
3 blrleCO‘%?"[{"O B l2,,2
pver 48 T 48 (=401, ---,24,

Substituting the expansion (17} into (14) and using the orthogonality relations
(19) we get the finite Fourier transform of equation (14)

Bi iz + Ni s+ B jus = G (20)
where ¢ and ¢ vefer to either the sine or cosine harmonic and
 dmk N

Noting that, because the chosen sinies and cosines arve the eigenfunctions of the
matrix A, the equations (20) are 48 independent sets of 24 equations, one set for
each of the 48 harmonic amplitudes,

The Fourier transform of the modified charge distribution on the even lines,
i, may overwrite the maodified charge density on these lines. The storage
layout and resulting interaction module is shown in Figure 1e.

6. Recursive Cyclie Reduction
‘The set of 24 equations for any of the 48 harmonie amplitudes aay be written
d)l;‘z + )‘d)J + ‘;b.r?ﬂ = QJ (7 = O) 2: Ty 4:6) k?’z)
where the bar, star and constant subscript & have been dropped for brevity.
These equations form a tridiagonal system with periadie boundary conditions
and a particularly efficient method of solution has been devised in collaboration
with Dr. G. Golub., This involves the recursive application of the process of
cyeiie reduction which follows.
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Bquation (22) is identieal in form to equation (10) except that the matrix 4
is replaced by the sealar A and the subseript advances in steps of 2 Instead of 1.

The process of redueing the number of equations by half as described in equa-
tions (13) and (14) may now be similarly applied, leading to 12 equations linking
every fourth line, namely:

gin + N9 + bj = ¢ (G =04, &) (23)
where
AN =2 =N g = g — A F e (24)

The 12 equations (23) arc of identical form to the equations (22) but with a
modified vight-hand side, ¢; , and central coefficient, A, as given by equation (24).
The quantity g¥’ may, for storage economy, overwrite the ¢, g4, ¢s - - que,
while g2, g6, g0 - - - ¢us 2re kept unchanged in their location.,

The proeess of reduction may therefore be carried out recursively until a small
number of equations are obtained which are solved directly.

If we let ¢ be the depth of the recursion the recurrence formulas become

T A(ﬂ)‘f’j + pjper = (1,(-“ (7 =0, 2‘, cee, (48 — 2*)) (25)
where
AU o (}\m)z
(26)
q§£+1) _ q;i)gt - 7\(”93('” 4 C]_S,'—?'zb
with
7 27
qg,n = qj* (27)

Three applications of the reduction process leave us with 3 equations for ¢,
$1s and ¢y which cannot be further reduced, namely:

}'(4) 1 I ¢0 q(()4)
Co=[1 A 1 |lés]=1{eld]=qa (28)
11 A" \ey g5

The eigenvalues, p: , and vectors, u: of the matrix C' are known:

w' = (1, 1,1, w =2 4 A\?

w' = (1,-2,1), w=r"-1 (29)
w' = (1,0, —1), =AY —-1

where the prime denotes (ranspose.
Fxpanding the solution in terms of the eigenveetors,

¢ = oy + oot + oy (30)

It
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then
Cd = q = oy + oWy = sy (31)
and
’ ) .
RLUT, IO A o T
w’ s 3(\)\(4) -+ 2)
’ g ) (
vy = BEH 0 — 2018+ g o
T we BO® 1) (32)
4 )
LS
w'ouy 2000 1)
fubstituting equations (32) into (30) we get the solution
o= a1 + ay ooy
P = @ — 2(!2 —i- oy (33}

b = @ — o3.

[ order to find the other values of & we caleulate internediate values re-
cursively. First determining éx , dos , dao then s, éns, dao , dos, de , B4, e, from
the relation

¢ = )T%’e; (4" = dyo — by} (34)
fort = 3,2 1and for j = 2" step 2 until (48 — 2') where all the quantities
on the right-hand side of equation (34) are known,

The process of eyelic reduction deseribed here is essentially a floating-poing
aleorithi due to the fact that the magnitude of A can grow very quickly
particularly for the higher harmonies. Consider for example the harmonic with
b = 24, when

Aep = —34

MY = —1.154

AP = ~1.33 %X 10°
AP o= —L77 X 10"

(:35)

This might be thought of as a disacdvantage, bringing as it does the danger of
machine overflow. In fact the phenomonon may be turned to advantage on a
floating-point machine by noticing that if, at any level of the reduction, A > 10"
and we are only inferested in computing with a precision of 1 part in 10", then
equation (25) may be written

N8, = (36)
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far j = O step 2" until (48 — 2) where the first and thivd terms of the left-hay
side have heen neglected in comparison with the second.
Thus the solution &, at the tth level ean be determined by simple division frg
equation (37)
C
45 -
thi = NG {an
and caleulation of intermediate values started immediately.
An alternative scaling of the cyele reduction method ean be made i whi)
numbers decrease in magnitude and which is therefore snitable for & fixed-paig
machine. However it appears thal an extra multiplication is introduced.

7. Solution on the Even Lines

The solution of the equations (22) by the technique of recurgive cyclic redu
tion has determined the valucs of all 48 harmonic amplitudes on the 24 even ling
of the mesh. The solution on the even lines is found by the proeess of Tour
synthesis using cquation (17), and the stage indicated by Figure 1d is resche

8. Solutian on the Odd Lines

The solution for the potential on the odd lines can be found from equation (13)
Ad, = q; — Q1 — djn (B

for j = 1 step 2 until 47 where the potential veetors on the right-hand side a
the known values on the cven lines.

The cquation (38) is a tridiagonal system with periodic boundary corndition
and again is most conveniently solved by recursive cycelic reduction, startiy
from the expanded form of equation (38)

bigl,i — dpe gt b = i T Gosa — $gn (3
for j = 1 step 2 until 47, for « = Q step 1 until 47,

9. Operation Count and Speed

In order to get more general formulas for the number of operations we conside
an (n X m) mesh where the Tourier analysis is performed in the n-direction
The nnnber of operations for the different stages of the calculation are as follows

(a) Form modified charge density n even lines. Aceording to equation {16
this takes 5 additions per point.* There arc # points per line and /2 lines ther
fore a total of

¢ The multiplication by 4 is an addition into the exponent of a Bosting-point niumbe
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7 . 1 ..
X Xo=2 = additions

<

(40)
it multiplications

(b) Fowrier analyses of the inadified charge on even lines,  According to eoua-
tion (18) Fourier analysis would require 2 multiplieations and # additions per
harmonie per line. There are n barmonies and #/2 lines therefore witheut any
simplification we get a total of :

m_n .
nXa X5 = 5 " additions
(11)
o multiplications
5 §

Ii however we make use of the symmetry of the sines and cosines, grouping
and adding together all terms mudtiplied by the same factor, belore performing
the multiplication, the number of operations can be drastically reduced. See for
example Whittaker and Robinson [3] who give a formulation for n = 12 and 24,
These technicues can be extended generally ton = 12 X 2°) where ¢ is an integer
equal to or greater than I, and an Arcor program has heen written and tested
for this case.

The number of operations in this program has been counted as a function of »
und fitted empirically as follows: '

% + 5.7n additions
,nz N . .
% + 0.6n multiplications.

These formulas are asymptotically eorrvect for large n, are correct to within 3
pereent for ¢ = 3 and overestimate the total number of operations by 24 pereent
and 8 percent for g = 1 and 2, respectively.

Using these results we obtain for step (b)

a2
%g’i + 2.85nm additions
(42)

%’f + 0.3nm multiplieations,

(c) Solution of harmonic amplitudes of potentiol on even lines. For a line of
points 48 long, equations (27) and (34) show the operational counts for the
process of cyelic reduction to be 2 X 95 additions and 94 multiplications.

I general we may say for a line ¢ points long, eyelie reduction takes (43
4 X ¢ additions and 2 X ¢ multiplications. -
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In the determination of the harmonic amplitudes at this stage there are # t
diagonal systems to be solved cach m/2 long. The total count is thercfore

43 a X %Q = 2nm additions

(44
22X nX % = TN multiplications.

(d) Fourier synthests. The Pourier synthesis required to obtain the p.
tential from the harmonic amplitudes of potential via equation (I7) ean b
simplified by grouping of terms to the same nwnber of operations as for Fourly
analysis ie step (b) giving a further

2
Nf? + 2.85nm additions
2 {45)
W . Coe
e + G.3nm multiplications,

(e) Solution on odd lines. First we form the right-hand side of equation (38)
for all points on the odd lines. There are n X /2 such points giving 2 > (nm)/?
= nm additions. :

Next the tridingonal system of equation (38) is solved by recursive eyclic re |

duction. There are m/2 such systems each n equation long. Using the results of
(¢) we have for the solution of these equations

4% nX %?’ = 2nm additions )
{46}
2XnX 5 = wn multiplications.
The total number of operations for stage (e) is therefore
dnmn additions .
(47)

e multiplications.

Tolal operations and storage. The number of operations for the solution of
Poisson’s equation given a right-hand side is thercfore

%;E + 13.2nm additions

2
nm

and i 4 2. 3nm multiplications (48}
. nm . . .
or in total 8 + 15.50m arithmetic operations

Throughout the process new results may overwrite old and we need basically
only one mesh of (n X m) storage locations. These originally contain the charge
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TABLE 1. IBM 7090

Stage Additions Ftimaled Multiplications Toimated | Total estimated | Measured
a 2knm 0.086 0 0 0.086}
nim /72 . [n2m/72 . 0.319
b {+2.85nm 0.121 \40.3mm 0.056 0.177
2nm 0.069 nm 0.058 0.127 0.168
nim/72 nm/72 .
d {+2.85nm a.121 {+0.3nm 0.056 0.177 0.230
¢ 3nm 0.103 nm 0.058 0.161 0.189
Solution of Poisson’s equation on 48 X 48 mesh = 0.728 0.906
TABLE 2. IBM 7094
Stage Additions Botimeled | Multiptications | Fotimaied | Total estimated |y,
inm 0.035 0 0 0.035
nm/72 nm?/72
{—f—2.85nm 0.049 {+0.3nm 0.022 0.071
d 2nm 0.028 nm 0.023 0.051
n*m/72 nm?/72
] q
d {+2.85nm 0.049 {+0.3nm 0.022 0.071
e 3nm 0.041 nm 0.023 0.064
Solution of Poisson’s equation on (48 X 48) mesh = 0.292 0.362
TABLE 3
Machine Additi Multiplicats
IBM 7090 15 usec 25 usec
IBM 7094 6 usec 10 usec

distribution which is overwritten by the Fourier transform of the charge, which
is overwritten by the Fourier transform of the potential, which is finally over-
written by the potential solution. ‘

The only other storage required is for the Fourier harmonics themselves. In
general there would be (n X n) numbers describing the shape of the # harmonics
however due to the symmetry of the sines and cosines only n/4 distinet numbers
occur. The total date storage is therefore (n X m + n/4).

Tables 1 and 2 show the estimated times for each stage in the process using the
operation counts above for the IBM 7090 and 7094, together with the measured
time on the 7090.

For the purpose of estimation we have used the speeds in Table 3 for the
tloating-point operations. The measured time is taken from a floating-point
symbolic FAP program, Due to the large number of additions some increase in
speed could be obtained by programming in fixed point.
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The difference between the measured and estimated times of about 249 |
accounted for by computer housekeeping operations. Using this factor on
7094 estimated figure we obtain 0.362 seconds as a vealistic estimate for the tin
of solution on the 7094, Tt is interesting to note from Table 1 that two frequend
repeated generalizations ars untrue. It Is not even approximately true, for ¢
ample, that additions may be negleeted eompared with multiplications, becan
in each stage of the process the time spent on additions is in fact greater th
the time spent on multiplications. Tt is also untrue that it is satisfactory |
consider only the highest power of n for in this case the time spent compuiti
operations proportional to #'m is less than the time spent on stages with opey
tions proportional to nm.

10. Accwracy

The aceuracy of the method has been exarvined by testing its ability tos
produce a given random distribution of potential,

We start by generating a random distribution ol potential, ¢", on the poin
of the mesh. Next the charge distribution, ¢, which corresponds exactly to ¢°
computed from equation (8) namely

Goj = et brrrg + Bris T+ Prgea — don, . (4

The Fourier technigue was then used to derive a potential distribution,
from the charge distribution g¢:; , and the exact distribution ¢* and the solutic
¢ were exarnined.

The random distribution generated varied between —} and 4% and the largs
value of t?e error, (¢° — ¢), obtained with seven different distributions w
33 X 107,

11, Solution of Other Differential Equoations
Consider the general matrix equations
Bé = q (8

where B is partitioned into (m X m) square blocks By, of size (n X m). o
g are partitioned into (m X 1) vectors ¢; of length (n X 1).

Bu Be -+ Bim o1 q1

By DB ¢ s i
B = . - . X ¢ =1} - N q=1- . (O

Bml e Bmm ‘!’m g

Such a system of partitioned equations naturally arises in the finite differen
form of a two-dimensional partial differential equation, when the mesh is co
fined to a rectangular region witk » lines each containing » mesh points.

The Fourier technique in general can be applied to the solution of equatic
(51) provided cach submatrix B;; has the same eigenvectors. In this case #
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vourier analysis and syuthesis stages ave performed using these eigenvectors. If
puation (51) is to be solved ouly once the necessary determination of the eigen-
vectors will probably make the method unprofitable. If, however, equation (51)
s to be solved repeatedly for different, vight-hand sides, as may oecur in a teau-
sigut problem, the solution for the eigenveetors need be done once only at the
heginning. Liven so, the method will not show to its full advantage unless the
pigenvectors are sinos and cosines when the special techniques for Fourier analysis
discussed in Seetion 9b can be used.
Tortunately a large class of linear differential equations have this property
and we now restrict the diseussion to these.
The finite dilference form of a linear partial differential equation at the poiut
(7,7} on a mesh can be written in general as
+
> QL wiitjpm = P (52}

Lim—p

where the cocflicients a; ., are those appearing in the interaction medule and in
general are functions of ¢ and j.

The equations will be of the desired form if:

{. The coefficients a,,,, are independent of one index, say 7 which rung from
0o m.

2. The coefficients have reflective symmetry with respect to this index, i.e.,
Gfom = O=l,m -

3. The boundary conditions can be expressed by defining ¢ ;if ¢ < 0 as follows:

D = —di; The zero value case
or b = i, The zero slope case (53)
or Poiri = Pu—s.i The periodic case

and similarly at the other boundary when 4 > .
In terms of the original partial differential these eonditions corvespond to:
1. The coefficients are independent of one variable, say .
2. The z derivatives appear only to an even order.
3. The boundary conditions are specified on a rectangle 0 S 2 =5, 0
and are of the form

fiA
s
IA

%?:0 or ¢ =10 along 2z =0
%
(54)

9% g or ¢=0 along © = Iy
dz

or the periodie condition ¢(x, ¥) = o + I, ¥).
1. In the y-dircction there is more freedom:

(i) % 4 byiz) = al2)  along =0

ea(2t) along ¥ =l

az(z) %é + B(x)
Yy
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Fic. 2. Problems most suitable for I'ouricr method: (2) Rectangular region, (b) sl
type property changes (1), @ etc., (¢} simple boundary conditions, (d) uniform mesh ;
least in analysis dircetion, (¢) typical equation YD(y)ala, ¥) -+ Biyels, ¥) = Sz, 1

or the periodic condition ¢(z, ) = ¢z + f, y).

In this case a uniform mesh would be used in the 2z direction and the Four
method would be applied by performing the analysis and synthesis also in ki
direction.

An example of an equation satisfying these conditious is the anisotropic i
fusion equation in (x, y) or (7, 2) coordinates, with Fourier analysis in the
and z-directions respectiveiy:

2
D.(y) g—:: U(J) + E{yle = sz, y),
R {56
D) Q‘f 3 {D,(T) CE—}} + B¢ = s(r, 2).
2 ror ar
Laplace’s, Poisson’s and Helmholtz equations are special eases of this equatior
Both the five- and nine-point interaction modules for the Laplacian and th
25-point module [4] for the biharmonic equation V% = 0 have the required
ﬁu,twe symimetry of the interaction coefficients and may also be solved by th
Fourier method. Figure 2 shows diagrammatically the types of problem s
suitable for solution by the Fourier method.

The Fourier method, providing as it does a fast method for the solution ¢
Poisson’s equation over a rectangle, can be used as the basis for various blec
tterative schemes for more complex regions that ean be divided up into rectangle
One could consider for example a block 48-line iteration analogous to the blot
1-line and 2-line methods [5].

12. Conclusion

For the special problems involving (z, ) geometry in the rectangle for whic
the Fourier method is well suited there seems little doubt that it is a fastt
method of caleulation than any direct or iterative method so far suggested.
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Yor other problems where the method can be applied but is not well suited
e position is less clear and we will have to await the results of praetical numeri-

ca] experiments before the fastest method ecan be chosen.
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